Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Grover’s Search with Faults on Some Marked Elements

    Grover’s algorithm is a quantum query algorithm solving the unstructured search problem of size N using O(N) queries. It provides a significant speed-up over any classical algorithm [3].

    The running time of the algorithm, however, is very sensitive to errors in queries. Multiple authors have analysed the algorithm using different models of query errors and showed the loss of quantum speed-up [2, 6].

    We study the behavior of Grover’s algorithm in the model where the search space contains both faulty and non-faulty marked elements. We show that in this setting it is indeed possible to find one of marked elements in O(N) queries.

    We also analyze the limiting behavior of the algorithm for a large number of steps and show the existence and the structure of a limiting state ρlim.