Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Cross-Subject Seizure Detection via Unsupervised Domain-Adaptation

    Automatic seizure detection from Electroencephalography (EEG) is of great importance in aiding the diagnosis and treatment of epilepsy due to the advantages of convenience and economy. Existing seizure detection methods are usually patient-specific, the training and testing are carried out on the same patient, limiting their scalability to other patients. To address this issue, we propose a cross-subject seizure detection method via unsupervised domain adaptation. The proposed method aims to obtain seizure specific information through shallow and deep feature alignments. For shallow feature alignment, we use convolutional neural network (CNN) to extract seizure-related features. The distribution gap of the shallow features between different patients is minimized by multi-kernel maximum mean discrepancies (MK-MMD). For deep feature alignment, adversarial learning is utilized. The feature extractor tries to learn feature representations that try to confuse the domain classifier, making the extracted deep features more generalizable to new patients. The performance of our method is evaluated on the CHB-MIT and Siena databases in epoch-based experiments. Additionally, event-based experiments are also conducted on the CHB-MIT dataset. The results validate the feasibility of our method in diminishing the domain disparities among different patients.

  • articleNo Access

    Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems

    Referring image segmentation aims to accurately align image pixels and text features for object segmentation based on natural language descriptions. This paper proposes NSNPRIS (convolutional nonlinear spiking neural P systems for referring image segmentation), a novel model based on convolutional nonlinear spiking neural P systems. NSNPRIS features NSNPFusion and Language Gate modules to enhance feature interaction during encoding, along with an NSNPDecoder for feature alignment and decoding. Experimental results on RefCOCO, RefCOCO+, and G-Ref datasets demonstrate that NSNPRIS performs better than mainstream methods. Our contributions include advances in the alignment of pixel and textual features and the improvement of segmentation accuracy.