Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Commutative feebly clean rings

    A ring R is defined to be feebly clean, if every element x can be written as x=u+e1e2, where u is a unit and e1, e2 are orthogonal idempotents. Feebly clean rings generalize clean rings and are also a proper generalization of weakly clean rings. The family of all semiclean rings properly contains the family of all feebly clean rings. Further properties of feebly clean rings are studied, some of them analogous to those for clean rings. The feebly clean property is investigated for some rings of complex-valued continuous functions. Throughout, all rings are commutative with identity.