Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Single depth map super-resolution via a deep feedback network

    Existing depth map-based super-resolution (SR) methods cannot achieve satisfactory results in depth map detail restoration. For example, boundaries of the depth map are always difficult to reconstruct effectively from the low-resolution (LR) guided depth map particularly at big magnification factors. In this paper, we present a novel super-resolution method for single depth map by introducing a deep feedback network (DFN), which can effectively enhance the feature representations at depth boundaries that utilize iterative up-sampling and down-sampling operations, building a deep feedback mechanism by projecting high-resolution (HR) representations to low-resolution spatial domain and then back-projecting to high-resolution spatial domain. The deep feedback (DF) block imitates the process of image degradation and reconstruction iteratively. The rich intermediate high-resolution features effectively tackle the problem of depth boundary ambiguity in depth map super-resolution. Extensive experimental results on the benchmark datasets show that our proposed DFN outperforms the state-of-the-art methods.