Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Time-resolved photoluminescence studies of nitride semiconductors and ultraviolet light emitters comprised of these materials are performed as a function of pump intensity as a means of understanding and evaluating device performance. Comparison of time-resolved photoluminescence (TRPL) on UV LED wafers prior to fabrication with subsequent device testing indicate that the best performance is attained from active regions that exhibit both reduced nonradiative recombination due to saturation of traps associated with point and extended defects and concomitant lowering of radiative lifetime with increasing carrier density. Similar behavior is observed in optically pumped UV lasers. Temperature and intensity dependent TRPL measurements on a new material, AlGaN containing nanoscale compositional inhomogeneities (NCI), show that it inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region.
Indium nitride (InN) is identified as a promising terahertz (THz) emitter based on the optical and electronic properties of high quality In- and N-face samples. Time domain THz spectroscopy has been employed to measure the pump wavelength and background carrier concentration dependence of THz emission from InN. There is no discernable difference between the In- and N-face InN samples, as expected for the improved crystalline quality and concomitant low background electron density and high mobility for both polarities. While there is only a weak dependence of THz signal on pump wavelength from 800 nm to 1500 nm, there is a strong dependence on background electron density. Modeling shows that the dominant mechanism for THz generation in bulk InN is the current associated with the diffusion of the photo-generated electrons at elevated electron temperature (photo-Dember effect) and the redistribution of the background electrons under drift, with larger screening from the higher mobility electrons as compared to holes. Compensation or p-type doping in conjunction with manipulation of the large internal electric fields in InN/InGaN nanostructures should lead to significant improvements in THz emitters.
Pulse radiolysis spectroscopically studies the initial stage of atomic and molecular reactions induced by electron beams. Single-bunched beams with bunch lengths on the order of femtosecond or shorter are fervently requested for this purpose. The laser wake field acceleration is readily applicable now, which is able to realize beams with bunch length of 1 fs, energy of 30 MeV, repetition rate of 1 Hz, bunch charge of 10 pC, energy width of 10%, etc.
A compact, high-brightness x-ray source has been developed through Thomson scattering between photons and relativistic electrons. 33keV energy photons (maximum) were generated in a 165-degree interaction configuration with 38MeV electrons and 800nm-wavelength Ti:sapphire laser light. The number of total photons generated at an interaction point was 106 photons/pulse for a 0.8nC electron bunch charge and 150mJ laser pulse energy. In a 90-degree interaction configuration, 105 photons/pulse total photons were obtained (maximum). Transverse profiles of x-ray intensity and energy were measured by an x-ray CCD camera. These experiment profiles agreed with the analytical results. Imaging using this x-ray source was demonstrated as an application. X-ray images for some objects were taken with various lengths between the objects and the camera. As a result, the refraction contrast images were observed with 17keV x-rays.
Useful nonlinear phase shifts can be produced in cascaded quadratic processes. The issues that arise in the extension of cascade nonlinearities to the femtosecond regime are outlined in this paper, and initial applications of the cascade phase shifts to femtosecond pulse generation and propagation are reviewed. The results demonstrate that the cascade phase shifts offer unique properties, and in some cases pulse-shaping techniques based on cascade nonlinearities have potential to offer substantial performance improvements over existing approaches.
We present our results from the experimental and modeling studies of picosecond (ps) and femtosecond (fs) nonlinearities of two novel corroles (a) tritolyl corrole (TTC) (b) triphenyl corrole (TPC) using the Z-scan technique. Both open and closed aperture Z-scan curves were recorded with ~2 ps/~40 fs laser pulses at a wavelength of 800 nm and nonlinear optical coefficients were extracted for both studies. Both the molecules possessed negative nonlinear refractive index (n2) as revealed by signature of the closed aperture data in both (ps and fs) time domains. Picosecond nonlinear absorption data of TPC obtained at a concentration of 5 × 10-4 M demonstrated complex behavior with switching from reverse saturable absorption (RSA) within saturable absorption (SA) at lower peak intensities to RSA at higher peak intensities. TTC data recorded at the similar concentration exhibited saturable absorption (SA) type of behavior at lower peak intensities to switching from RSA with in SA at higher peak intensities. At a concentration of 2.5 × 10-4 M, the ps open aperture data at higher peak intensities illustrated effective three-photon absorption (3PA) for both the molecules. We also report the picosecond spectral dependent Z-scan studies performed at 680 nm, 700 nm, and 740 nm. Nonlinear absorption and refraction of both the samples at these three wavelengths were studied in detail. Femtosecond nonlinear absorption data of TPC and TTC demonstrated the behavior of saturable absorption (SA) at a concentration of 1 × 10-3 M. Solvent contribution to the nonlinearity was also identified. We have also evaluated the sign and magnitude of third order nonlinearity. We discuss the nonlinear optical performance of these organic molecules.
Zinc phthalocyanine with S-aryl groups at α-positions have been synthesized and its optical, emission, electrochemical and third-order nonlinear optical properties were investigated. Both the Soret and Q-bands were red-shifted and obeyed Beer–Lambert's law. Electrochemical properties indicated that both oxidation and reduction processes were ring centered. Emission spectra were recorded in different solvents and the fluorescence yields obtained were in the range of 0.02 while time-resolved fluorescence data revealed lifetimes of typically few ns. Excited state dynamics in this novel thio-zinc phthalocyanine molecule has been investigated using femtosecond (fs) degenerate pump-probe spectroscopy. Nonlinear optical properties of this molecule have been examined using the Z-scan technique with picosecond (ps) and fs pulses. Both open and closed aperture Z-scan curves were recorded with ~2 ps/~150 fs laser pulses at a wavelength of 800 nm and nonlinear optical coefficients were extracted from both the studies. Degenerate pump-probe data performed at 600 nm suggested a single long lifetime of ~300 ps, possibly originating from the non-radiative decay of S1 state.
Zinc phthalocyanine possessing triphenylamine at its peripheral position has been synthesized and its optical, emission, electrochemical and third-order nonlinear optical (NLO) properties were investigated. Soret band was broadened due to the presence of triphenylamine moiety. Electrochemical properties indicated that both oxidation and reduction processes were ring centered. Emission spectra were recorded in different solvents and the fluorescence yields obtained were in the range of 0.02–0.17 while the time-resolved fluorescence data revealed radiative lifetimes of typically few ns. Third-order NLO properties of this molecule have been examined using the Z-scan technique with picosecond (ps) and femtoseocnd (fs) pulses. Closed and open aperture Z-scan data were recorded with 2 ps/1 50 fs laser pulses at a wavelength of 800 nm and NLO coefficients were extracted from both the data. Our data clearly suggests the potential of this molecule for photonics applications.
We report here the design and synthesis of corrole-metallocene dyads consisting of a metallocene (either ferrocene (Dyad 1) or mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) (Dyad 2)) connected via an ester linkage at meso phenyl position. Both the dyads were characterized by 1H NMR, MALDI-TOF, UV-visible, fluorescence spectroscopies (steady-state, picosecond time-resolved), femtosecond transient absorption spectroscopy (fs-TA) and electrochemical methods. The absorption spectra of these dyads showed slight broadening and splitting of the Soret band that indicates a weak ground state interaction between the corrole macrocycle and metallocene part of the present donor–acceptor (D–A) system. However, in both the dyad systems, fluorescence emission of the corrole was quenched in polar solvents as compared to its parent compound 10-(4-hydroxyphenyl)-5,15-bis-(pentafluorophenyl ) corrole (Ph-Corr). The quenching was more pronounced in ferrocene derivatives than in cobaltocenyl derivatives. Transient absorption studies confirm the absence of photoinduced electron transfer from metallocene to correl for these dyad systems and the quenching of singlet state of corrole is found to enhance intersystem crossing due to heavy atom effect.
The lifetime of the asymmetric fundamental stretching 2218 cm-1 vibration of the anesthetic gas nitrous oxide (N2O) dissolved in octanol and olive oil is reported. These solvents are model systems commonly used to assess anesthetic potency. Picosecond time-scale molecular dynamics simulations have suggested that protein dynamics or membrane dynamics play a role in the molecular mechanism of anesthetic action. Ultrafast infrared spectroscopy with 100 fs time resolution is an ideal tool to probe dynamics of anesthetic molecules on such timescales. Pump-probe studies centered at the peak of the vibrational band yield a lifetime of 55 ± 1 ps in olive oil and 52 ± 1 ps in octanol. The similarity of lifetimes suggests that energy relaxation of the anesthetic is determined primarily by the hydrophobic nature of the environment, consistent with models of anesthetic action. The results show that nitrous oxide is a good model system for probing anesthetic-solvent interactions using nonlinear infrared spectroscopy.
We present results of numerical studies of the phase compensation in the pulse compression process via the shaping of asymmetric pulses at the system input. In this case, an effective pulse compression is achieved, with a ratio corresponding to the pulse spectral broadening in fiber. This opportunity is caused by the fact that self-phase modulation in fiber results in a phase given by the pulse shape.
Time-resolved photoluminescence studies of nitride semiconductors and ultraviolet light emitters comprised of these materials are performed as a function of pump intensity as a means of understanding and evaluating device performance. Comparison of time-resolved photoluminescence (TRPL) on UV LED wafers prior to fabrication with subsequent device testing indicate that the best performance is attained from active regions that exhibit both reduced nonradiative recombination due to saturation of traps associated with point and extended defects and concomitant lowering of radiative lifetime with increasing carrier density. Similar behavior is observed in optically pumped UV lasers. Temperature and intensity dependent TRPL measurements on a new material, AlGaN containing nanoscale compositional inhomogeneities (NCI), show that it inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region.
Indium nitride (InN) is identified as a promising terahertz (THz) emitter based on the optical and electronic properties of high quality In- and N-face samples. Time domain THz spectroscopy has been employed to measure the pump wavelength and background carrier concentration dependence of THz emission from InN. There is no discernable difference between the In- and N-face InN samples, as expected for the improved crystalline quality and concomitant low background electron density and high mobility for both polarities. While there is only a weak dependence of THz signal on pump wavelength from 800 nm to 1500 nm, there is a strong dependence on background electron density. Modeling shows that the dominant mechanism for THz generation in bulk InN is the current associated with the diffusion of the photo-generated electrons at elevated electron temperature (photo-Dember effect) and the redistribution of the background electrons under drift, with larger screening from the higher mobility electrons as compared to holes. Compensation or p-type doping in conjunction with manipulation of the large internal electric fields in InN/InGaN nanostructures should lead to significant improvements in THz emitters.
Self-similarity in optics, along with the soliton physics, recently attracts interest of the researchers of ultrafast and nonlinear fiber optics.1 Both the parabolic similariton of active fibers, and nonlinear-dispersive similariton generated in passive fiber are of interest, especially for applications in ultrafast optics, such as pulse compression and shaping, similariton-based temporal lensing and spectrotemporal imaging, spectral interferometry, etc. However, the signal analysis-synthesis problems in a few femtosecond time scale demand the generation and study of broadband similaritons of ~100 nm bandwidth.
We generate the broadband similariton, and characterize it experimentally to reveal its nature and distinctive properties, and to describe it mathematically. We carry out the complete characterization of the broadband similariton by means of the chirp measurement through the technique of spectral compression and frequency tuning in the sum-frequency generation process. Our studies are of interest in view of applications of similariton to the signal analysis and synthesis problems in ultrafast optics, particularly for similariton-induced temporal lensing and similariton-based spectral interferometry. Our developed method of similariton chirp measurement can serve also for the fiber characterization.