Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Hypergraphs with high projective dimension and 1-dimensional hypergraphs

    (Dual) hypergraphs have been used by Kimura, Rinaldo and Terai to characterize squarefree monomial ideals J with pd(R/J)μ(J)1, i.e. whose projective dimension equals the minimal number of generators of J minus 1. In this paper, we prove sufficient and necessary combinatorial conditions for pd(R/J)μ(J)2. The second main result is an effective explicit procedure to compute the projective dimension of a large class of 1-dimensional hypergraphs (the ones in which every connected component contains at most one cycle). An algorithm to compute the projective dimension is also provided. Applications of these results are given; they include, for instance, computing the projective dimension of monomial ideals whose associated hypergraph has a spanning Ferrers graph.

  • articleNo Access

    Generalized Newton complementary duals of monomial ideals

    Given a monomial ideal in a polynomial ring over a field, we define the generalized Newton complementary dual of the given ideal. We show good properties of such duals including linear quotients and isomorphism between the special fiber rings. We construct the cellular free resolutions of duals of strongly stable ideals generated in the same degree. When the base ideal is generated in degree two, we provide an explicit description of cellular free resolution of the dual of a compatible generalized stable ideal.