Recent developments in fiber lasers and nanomaterials have allowed the possibility of using laser wakefield acceleration (LWFA) as the source of low-energy electron radiation for endoscopic and intraoperative brachytherapy, a technique in which sources of radiation for cancer treatment are brought directly to the affected tissues, avoiding collateral damage to intervening tissues. To this end, the electron dynamics of LWFA is examined in the high-density regime. In the near-critical density regime, electrons are accelerated by the ponderomotive force followed by an electron sheath formation, resulting in a flow of bulk electrons. These low-energy electrons penetrate tissue to depths typically less than 1 mm. First a typical resonant laser pulse is used, followed by lower-intensity, longer-pulse schemes, which are more amenable to a fiber-laser application.