Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Ribbonlength and crossing number for folded ribbon knots

    We study Kauffman’s model of folded ribbon knots: knots made of a thin strip of paper folded flat in the plane. The ribbonlength is the length to width ratio of such a folded ribbon knot. We show for any knot or link type that there exist constants c1,c2>0 such that the ribbonlength is bounded above by c1Cr(K)2, and also by c2Cr(K)3/2. We use a different method for each bound. The constant c1 is quite small in comparison to c2, and the first bound is lower than the second for knots and links with Cr(K) 12,748.

  • articleNo Access

    Linking number and folded ribbon unknots

    We study Kauffman’s model of folded ribbon knots: knots made of a thin strip of paper folded flat in the plane. The folded ribbonlength is the length to width ratio of such a folded ribbon knot. The folded ribbon knot is also a framed knot, and the ribbon linking number is the linking number of the knot and one boundary component of the ribbon. We find the minimum folded ribbonlength for 3-stick unknots with ribbon linking numbers ±1 and ±3, and we prove that the minimum folded ribbonlength for n-gons with obtuse interior angles is achieved when the n-gon is regular. Among other results, we prove that the minimum folded ribbonlength of any folded ribbon unknot which is a topological annulus with ribbon linking number ±n is bounded from above by 2n.