Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RECENT DEVELOPMENTS IN THE MANUFACTURING OF COMPONENTS FROM ALUMINIUM-, MAGNESIUM- AND TITANIUM-BASED ALLOYS

    COSMOS01 May 2009

    Recent developments in the field of manufacturing techniques and alloy development of light materials are reviewed. In the field of manufacturing Aluminium based components, special attention is given to casting, including liquid forging and semi-solid forming technology while for sheet metal forming technology the focus is on material properties and process technology in superplastic forming. For the manufacturing of Magnesium-based components, special attention is given to casting processes and alloy development for casting. For wrought Magnesium, material properties control is covered. For Titanium-based components, an overview of the latest additions to high strength alloys are given, including non-linear elasticity as demonstrated by materials like GUM Metal™. Advanced forming technology such as Levi Casting are also treated.

  • articleNo Access

    Evolution of Hydroforming Technologies and Its Applications — A Review

    Advanced forming technologies have been evolving at a rapid pace with the products applicability in the industrial fields of aerospace and automobile especially for the materials like aluminum and titanium alloys (light weight) and ultra-high strength steels. Innovative forming methods like hydroforming (tube and sheet) have been proposed for industries throughout the world. The ever-increasing needs of the automotive industry have made hydroforming technology an impetus one for the development and innovations. In this paper, the review on various developments towards lightweight materials for different applications is presented. The influencing process parameters considering the different characteristics of the tube and sheet hydroforming process have also been presented. General ideas and mechanical improvements in sheet and tube hydroforming are given late innovative work exercises. This review will help researchers and industrialists about the history, state of the art in hydroforming technologies of the lightweight materials.

  • articleNo Access

    A Rate-Temperature-Dependent Visco-Hyperelastic Constitutive Model for UD CF/PEEK Prepregs During a One-Step Hot Stamping Forming Process

    An anisotropic visco-hyperelastic constitutive model for rate-temperature-dependent deformation during one-step hot stamping forming simulation of unidirectional (UD) CF/PEEK prepregs is presented. This constitutive model is based on strain energy decomposition and a multiplicative decomposition of the deformation gradient. Two simple Maxwell models are used to characterize the viscoelastic behavior of the melted PEEK matrix and longitudinal shear deformation, respectively, and a shear invariant of Ish=I5I4 is proposed to calculate the shear deformation. Moreover, the fiber stretching deformation is modeled by an anisotropic hyperelastic model. To obtain the model parameters, tensile tests at different strain rates and temperatures above the melt temperature of PEEK are performed on 0, 10, and 90 CF/PEEK prepreg specimens, respectively. In parallel, the [0]8 and [45]8 curved beam specimens are experimentally fabricated to validate the constitutive model. The VUMAT subroutine is developed according to the proposed constitutive model and applied for a 1040 off-axis tensile simulation and hot-stamping forming simulation of CF/PEEK prepregs. The experimental and simulation results show that the materials flow, distribution of strain and stress, forming defects (wrinkles and overlap) of CF/PEEK curved beam can be captured by the proposed model.

  • chapterNo Access

    SUPERPLASTIC FORMING OF AZ80A MAGNESIUM ALLOY AUTOMOBILE WHEEL

    This paper proposes a forming technology of AZ80A magnesium alloy automotive wheel, which collects the superplastic compound extrusion and the bulging technology of rigid die. By using dynamic recrystallization superplasticity, the new method completes the forming for complex auto wheel successfully. It has the advantages of simple process, high forming efficiency and compact structure.