Experimental data on transverse momentum spectra of strange particles (K0S,K−,K∗0,ϕ,Λ,Λ∗,Σ∗,Ξ−,Ω) produced in pp collisions at √s=200GeV obtained by the STAR and PHENIX collaborations at RHIC are analyzed in the framework of z-scaling approach. The concept of the z-scaling is based on fundamental principles of self-similarity, locality, and fractality of hadron interactions at high energies. General properties of the data z-presentation are studied. Self-similarity of fractal structure of protons and fragmentation processes with strange particles is discussed. A microscopic scenario of constituent interactions developed within the z-scaling scheme is used to study the dependence of momentum fractions and recoil mass on the collision energy, transverse momentum and mass of produced inclusive particle, and to estimate the constituent energy loss. We consider that obtained results can be useful in study of strangeness origin, in searching for new physics with strange probes, and can serve for better understanding of fractality of hadron interactions at small scales.