Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    ANALYSIS OF TRACE RARE EARTH ELEMENTS IN MISCH METAL BY MEANS OF ITP-PIXE METHOD

    A misch metal, an alloy of light rare earth elements, was analyzed by a new coupled analytical method, ITP-PIXE(isotachophoresis—Particle Induced X-ray Emission) : The sample solution containing ca.1 mg misch metal was separated and fractionated by the use of a preparative isotacho-phoretic analyzer. The dropwise fractions containing nanomole rare earth elements were analyzed off-line by PIXE. The matrix effect in X-ray measurement was reduced by the isotachophoretic removing of the dominant lanthanoids and preconcentration of the trace elements of interest. Consequently the minor elements, Sm, Gd, Tb, Dy, Ho, Er, Yb and Y could be determined accurately. The most trace element found was Yb (4ppm, 4ng in 1mg sample). The good accuracy of ITP-PIXE method was also demonstrated for several model samples of lanthanoids, where La was the dominant element and the thirteen lanthanoids were the minor elements. The ratio was varied from 500:1 to 50000:1. Even in the case of 50000:1, ca. 10% accuracy was achieved for each minor element except for Sm(23%), Gd(17%) and Yb(18%). The analytical results by ITP-PIXE were compared with those by means of ICP-AES(Inductively Coupled Plasma—Atomic Emission Spectrometry).

  • articleNo Access

    A novel technology to produce microalgae biomass as feedstock for biofuel, food, feed and more

    TECHNOLOGY01 Jun 2015

    While microalgae oil was perceived as the preferred feedstock to supply the inelastic global demand for biofuel, industry and academia attempts to create viable microalgae-oil production processes has not reach the desired goal yet. UniVerve Ltd. has developed an innovative technological process that provides a scalable, cost effective and sustainable solution for the production of microalgae-biomass. The oil, which can be extracted with off-the-shelf wet-extraction technologies and used as an excellent feedstock for all kinds of biofuel, is expected to be produced at up to US$50 per barrel. As the biomass also contains omega-3, proteins and other valuable biomaterials that can be commercialized in the food and feed markets, a microalgae farm can serve the biofuel, food and feed industries, which currently face an increasing lack of quality feedstock at an affordable price.