Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We give an infinite family of finite dualizable unary algebras that are not fully κ-dualizable, for all cardinals κ.
We introduce a new Galois connection for partial operations on a finite set, which induces a natural quasi-order on the collection of all partial algebras on this set. The quasi-order is compatible with the basic concepts of natural duality theory, and we use it to turn the set of all alter egos of a given finite algebra into a doubly algebraic lattice. The Galois connection provides a framework for us to develop further the theory of natural dualities for partial algebras. The development unifies several fundamental concepts from duality theory and reveals a new understanding of full dualities, particularly at the finite level.