Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper is intended to verify that cost-sensitive learning is a competitive approach for learning fuzzy rules in certain imbalanced classification problems. It will be shown that there exist cost matrices whose use in combination with a suitable classifier allows for improving the results of some popular data-level techniques. The well known FURIA algorithm is extended to take advantage of this definition. A numerical study is carried out to compare the proposed cost-sensitive FURIA to other state-of-the-art classification algorithms, based on fuzzy rules and on other classical machine learning methods, on 64 different imbalanced datasets.
Many real-world classification systems must comply with a series of inherent restrictions to the problem at hand such as response times, power consumptions or computational costs. This poses a fundamental limitation to traditional performance-driven classifiers and learning algorithms by restraining their applicability in cost-sensitive scenarios. Because of this, fuzzy systems are leveraged to learn cost-conscious multi-stage classifiers through multiobjective optimization to find a set of optimal tradeoffs between accuracy and any related cost. This approach allows find a suitable balance between all objectives regardless of the scenario. Experimental evaluations were done for Sound Environment Classification in modern battery-powered hearing aids by jointly optimising classification accuracy and computational costs.