Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Ultrasound (US) imaging is the initial phase in the preliminary diagnosis for the treatment of kidney diseases, particularly to estimate kidney size, shape and position, to give information about kidney function, and to help in diagnosis of abnormalities like cysts, stones, junctional parenchyma and tumors which is shown in Figs. 7–9. This study proposes Grey Level Co-occurrence Matrix (GLCM)-based Probabilistic Principal Component Analysis (PPCA) and Artificial Neural Network (ANN) method for the classification of kidney images. Grey Wolf Optimization (GWO) is used to update the current positions of abnormal kidney images in the discrete searching space, thus getting the optimal feature subset for better classification purposes based on Feed Forward Neural Network (FFNN). The scanned image is pre-processed and the required features are extracted by GLCM, among those, some features are selected by PPCA. Feed Forward Back propagation Neural Network (FFBN) is used to classify the normalities and abnormalities in the part of kidney images. The proposed methodology is implemented in MATLAB platform and the analyzed result produces 98% accuracy using GWO-FFBN technique.
Context: Due to the change and advancement in technology, day by day the internet service usages are also increasing. Smartphones have become the necessity for every person these days. It is used to perform all basic daily activities such as calling, SMS, banking, gaming, entertainment, education, etc. Therefore, malware authors are developing new variants of malwares or malicious applications especially for monetary benefits.
Objective: Objective of this research paper is to develop a technique that can be used to detect malwares or malicious applications on the android devices that will work for all types of packed or encrypted malicious applications, which usually evade decompiling tools.
Method: In the proposed approach, visualization method is used for the detection of malware. In the first phase, application files are converted into images and then in second phase, texture feature of images are extracted using Grey Level Co-occurrence Matrix (GLCM). In the last phase, machine learning classification algorithms are used to classify the malicious and benign applications.
Results: The proposed approach is run on different datasets collected from various repositories. Different efficiency parameters are calculated and the proposed approach is compared with the existing approaches.
Conclusion: We have proposed a static technique for efficient detection of malwares. The proposed technique performs better than the existing technique.
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification "worth" is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
Reconstructing and repairing of corrupted or missing parts after object removal in digital video is an important trend in artwork restoration. Video inpainting is an active subject in video processing, which deals with the recovery of the corrupted or missing data. Most previous video inpainting approaches consume more time in extensive search to find the best patch to restore the damaged frames. In addition to that, most of them cannot handle the gradual and sudden illumination changes, dynamic background, full object occlusion, and object changes in scale. In this paper, we present a complete video inpainting framework without the extensive search process. The proposed framework consists of a segmentation stage based on low-resolution version and background subtraction. A background inpainting stage is applied to restore the damaged background regions after static or moving object removal based on the gray-level co-occurrence matrix (GLCM). A foreground inpainting stage is based on objects repository. GLCM is used to complete the moving occluded objects during the occlusion. The proposed method reduces the inpainting time from hours to a few seconds and maintains the spatial and temporal consistency. It works well when the background has clutter or fake motion, and it can handle the changes in object size and in posture. Moreover, it is able to handle full occlusion and illumination changes.