Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This is the first research on the vibration and buckling analysis of a graphene nanoplatelet composite (GPLRC) microdisk in the framework of a numerical based generalized differential quadrature method (GDQM). The stresses and strains are obtained using the higher-order shear deformable theory (HOSDT). Rule of the mixture is employed to obtain varying mass density, thermal expansion, and Poisson’s ratio, while the module of elasticity is computed by modified Halpin–Tsai model. Governing equations and boundary conditions of the GPLRC microdisk are obtained by implementing Extended Hamilton’s principle. The results show that outer to inner ratios of the radius (Ro/Ri), ratios of length scale and nonlocal to thickness (l/h and μ/h), and GPL weight fraction (gGPL) have a significant influence on the frequency and buckling characteristics of the GPLRC microdisk. Another necessary consequence is that by increasing the value of the Ro/Ri, the distribution of the displacement field extends from radial to tangent direction, especially in the lower mode numbers, this phenomenon appears much more remarkable. A useful suggestion of this research is that, for designing the GPLRC microdisk at the low value of the Ro/Ri, more attention should be paid to the gGPL and Ro/Ri, simultaneously.
This is the first research on the thermal buckling analysis of graphene nanoplatelets reinforced composite (GPLRC) doubly curved open cylindrical micropanel in the framework of numerical-based two-dimensional generalized differential quadrature method (2D-GDQM). Additionally, the small-scale effects are analyzed based on nonlocal strain gradient theory (NSGT). The stresses and strains are obtained using the high-order shear deformable theory (HOSDT). The rule of mixture is employed to obtain varying thermal expansion, and Poisson’s ratio, while module of elasticity is computed by modified Halpin–Tsai model. In addition, nonlinear temperature changes along the GPLRC micropanel’s thickness direction. Governing equations and boundary conditions of the GPLRC doubly curved open cylindrical micropanel are obtained by implementing the extended Hamilton’s principle. Besides, for the validation of the results, the results of current model are compared to the results acquired from analytical method. The results show that GPL weight function (gGPL), the ratio of shell curvatures (R1/R2), NSG parameters, and geometric parameters have a significant influence on the thermal buckling characteristics of the GPLRC doubly curved open cylindrical micropanel.