TiO2-based catalysts effective in visible radiation for eliminating organic pollutants have attracted intense research activity as a future generation photocatalytic material. However, recombination of electron–hole pairs through trapping/de-trapping as well as the disadvantages of recycling and separation/filtration of powders lead to the limitation of powder TiO2 materials. TiO2 nanotube array films supporting vanadium pentoxide nanoparticles (VTNTs) were synthesized by electrophoresis deposition method with the prepared TiO2 nanotube arrays as the cathode and V2O5 sol as the electrolyte. The results indicate that the formation of Ti–O–V bonds and intimate interaction between host–guest interfaces help to enhance the hybrids’ photodegradation activity of gaseous benzene. Importantly, hybrid film catalysts prepared with 0.05 mol/L V2O5 sol for 10 min electrophoresis deposition perform a 98% conversion rate of benzene and 1028.8 mg/m3CO2 production in 80 min under UV–Vis irradiation.