Please login to be able to save your searches and receive alerts for new content matching your search criteria.
For a large class of reaction–diffusion bidirectional associative memory (RDBAM) neural networks with periodic coefficients and general delays, several new delay-dependent or delay-independent sufficient conditions ensuring the existence and global exponential stability of a unique periodic solution are given, by constructing suitable Lyapunov functionals and employing some analytic techniques such as Poincaré mapping. The presented conditions are easily verifiable and useful in the design and applications of RDBAM neural networks. Moreover, the employed analytic techniques do not require the symmetry of the bidirectional connection weight matrix, the boundedness, monotonicity and differentiability of activation functions of the network. In several ways, the results generalize and improve those established in the current literature.