Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the context of (2+1)–dimensional gravity, we use holonomies of constant connections which generate a q–deformed representation of the fundamental group to derive signed area phases which relate the quantum matrices assigned to homotopic loops. We use these features to determine a quantum Goldman bracket (commutator) for intersecting loops on surfaces, and discuss the resulting quantum geometry.
We derive a formula expanding the bracket with respect to a natural deformation parameter. The expansion is in terms of a two-variable polynomial algebra of diagram resolutions generated by basic operations involving the Goldman bracket. A functorial characterization of this algebra is given. Differentiability properties of the star product underlying the Kauffman bracket are discussed.