Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Noise Reduction and Pattern Formation in Rapid Granular Flows

    Spatial fluctuations in dissipative systems, such as rapid granular flows, behave very differently from those in elastic fluids. Fluctuations in the flow field drive the linear and nonlinear instability in the density field (clustering), while vortex structures appear and grow through the mechanism of noise reduction. The dynamics of the flow field on the largest space and time scales is described by diffusion equations with different diffusivities for the transverse and longitudinal flow fields. The results are obtained from analytic and simulation methods.

  • articleNo Access

    Discrete element modeling of shock-induced particle jetting

    The dispersal of particle shell or ring by divergent impulsive loads takes the form of coherent particle jets with the dimensions several orders larger than that of constituent grain. Particle-scale simulations based on the discrete element method have been carried out to reveal the evolution of jets in semi-two-dimensional rings before they burst out of the external surface. We identify two key events which substantially change the resulted jetting pattern, specifically, the annihilation of incipient jets and the tip-slipping of jets, which become active in different phases of jet evolution. Parametric investigations have been done to assess the correlations between the jetting pattern and a variety of structural parameters. Overpressure, the internal and outer diameters of ring as well as the packing density are found to have effects on the jet evolution with different relative importance.