Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Detection of terahertz radiation by GaAs transistor structures has been studied experimentally. The two types of samples under study included dense arrays of HEMTs and large-apertures detectors. Arrays consisted of parallel and series chains with asymmetric gate transistors for enhanced photoresponse on terahertz radiation. We investigated two types of wide-aperture detectors: grating gate detector, and single gate detector with bow-tie antenna. Wide-aperture detectors were symmetrical. Studies of transistor chains have shown that two essential features for this type of detector are the presence of asymmetry in the gate, and the type of connection between individual transistors themselves. Wide-aperture detectors have also been tested by narrow beams of terahertz radiation, which allows analyzing the role influence of individual parts of the detector for total sensitivity to terahertz excitation. The sensitivity and noise equivalent power of the detectors were evaluated.
THz response of AlGaAs/InGaAs/GaAs HEMT structure has been investigated. The structure consists of the serpentine chain of series connected HEMTs. The source of one is the drain for the subsequent transistor. Experiments have been showed THz response peculiarities of such structures and enhanced noise equivalent power.
A spatially and spectrally resolved ultra-narrowband absorber with a dielectric grating and metal substrate has been reported. The absorber shows that the absorption rate is more than 0.99 with the absorption bandwidth less than 1.5 nm at normal incidence for TE polarization (electric field is parallel to grating grooves). The angular width of the absorption is about 0.27∘. The wavelength-angle sensitivity and absorption-angle sensitivity are 13.4 nm per degree and 296.3% per degree, respectively. The simulation results also show the spatially and spectrally resolved ultra-narrowband absorption is originated from the guide-mode resonance. In addition, the wavelength-angle sensitivity can be improved by enlarging the grating period according to the guide-mode resonance mechanism. The proposed absorber has potential applications in optical filters, angle measurement and thermal emitters.
Ultra-narrowband light absorption is desired for many applications. A near-infrared TM-polarization (magnetic field is parallel to grating grooves) ultra-narrowband absorber with dielectric metamaterials has been reported theoretically in this paper. The simulation results show that we can achieve an ultra-narrowband absorption at the incident wavelength of 1.0646μm with the absorption bandwidth less than 0.9 nm and the absorption rate more than 0.99 for TM polarization. At the same time, we find that the high absorption rate can only remain up to 5∘, which means our absorber has high directivity. In addition, the field distribution at the resonance wavelength shows that the ultra-narrowband absorption in our absorber has originated from magnetic resonance effect. Our near-infrared TM-polarization ultra-narrowband absorber is a good candidate for laser stealth.
Photonic patterns were fabricated in fused silica, BK7, and Ge-doped borophosphosilica glass (Ge-BPSG) using a focused femtosecond (fs)-laser beam. By focusing tens to hundreds of μJ fs-laser beam with a 10x microscope objective, we inscribed the semi-circular cavity patterns on the fused silica and the BK7. The inscribed hole diameters are 28 μm (fused silica) and 11 μm (BK7) at an input fluence of 71 J/cm2. This circular-cavity patterning is ascribed to the ablation via the multi-photon absorption process. For the application to functional devices, the surface relief gratings (SRGs) were made in fused silica and BK7 by focusing the fs-laser beam on the glass surface with a cylindrical lens and by translating the sample in the direction perpendicular to the focus line. The first-order diffraction efficiencies of the prepared SRGs are 34% (fused silica) and 14% (BK7). A refractive-index grating was also fabricated in the Ge-BPSG by using the two-beam interference method. The maximum index modulation of 2.5 × 10-3 was obtained for 20,000 laser shots of 73 mJ/cm2 per pulse. It is thought that the index modification occurs through the defect formation by the fs-laser irradiation.
Here, we propose a novel plasmonic structure, called asymmetric plasmonic nanocavity grating (APNCG), which is shown to dramatically enhance nonlinear optical process of second harmonic generation (SHG). The proposed structure consists of two different metals on both sides of lithium niobate and a thin layer of graphene. By using two different metals the nonlinear susceptibility of the waveguide would be increased noticeably causing to increase SHG. On the other hand, it consists of two identical gratings on one side. By two identical gratings, the pump beam is coupled to two opposing SPP waves, which interfere with each other and result in SPP standing wave in the region between the two gratings. The distance between two gratings will be optimized to reach the highest SHG. It will be shown that by optimizing the geometry of proposed structure and using different metals, field enhancement in APNCG waveguides can result in large enhancement of SHG.
Interleukin-6, a cytokine relating inflammatory and autoimmune activity, was detected with three fluorescence assays using a plasmonic chip. In their assays, the way of surface modification, sample volume, incubation time and mixing solution, were found to influence the detection sensitivity. When the assay was revised in the point of a rapid and easy process, the detection sensitivity was not compromised compared to assays with sufficient sample volume and assay time. To suit the purpose of immunosensing, the assay conditions should be determined.
THz response of AlGaAs/InGaAs/GaAs HEMT structure has been investigated. The structure consists of the serpentine chain of series connected HEMTs. The source of one is the drain for the subsequent transistor. Experiments have been showed THz response peculiarities of such structures and enhanced noise equivalent power.
Detection of terahertz radiation by GaAs transistor structures has been studied experimentally. The two types of samples under study included dense arrays of HEMTs and large-apertures detectors. Arrays consisted of parallel and series chains with asymmetric gate transistors for enhanced photoresponse on terahertz radiation. We investigated two types of wide-aperture detectors: grating gate detector, and single gate detector with bow-tie antenna. Wide-aperture detectors were symmetrical. Studies of transistor chains have shown that two essential features for this type of detector are the presence of asymmetry in the gate, and the type of connection between individual transistors themselves. Wide-aperture detectors have also been tested by narrow beams of terahertz radiation, which allows analyzing the role influence of individual parts of the detector for total sensitivity to terahertz excitation. The sensitivity and noise equivalent power of the detectors were evaluated.