Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Aberrant Prefrontal–Thalamic–Cerebellar Circuit in Schizophrenia and Depression: Evidence From a Possible Causal Connectivity

    Neuroimaging studies have suggested the presence of abnormalities in the prefrontal–thalamic–cerebellar circuit in schizophrenia (SCH) and depression (DEP). However, the common and distinct structural and causal connectivity abnormalities in this circuit between the two disorders are still unclear. In the current study, structural and resting-state functional magnetic resonance imaging (fMRI) data were acquired from 20 patients with SCH, 20 depressive patients and 20 healthy controls (HC). Voxel-based morphometry analysis was first used to assess gray matter volume (GMV). Granger causality analysis, seeded at regions with altered GMVs, was subsequently conducted. To discover the differences between the groups, ANCOVA and post hoc tests were performed. Then, the relationships between the structural changes, causal connectivity and clinical variables were investigated. Finally, a leave-one-out resampling method was implemented to test the consistency. Statistical analyses showed the GMV and causal connectivity changes in the prefrontal–thalamic–cerebellar circuit. Compared with HC, both SCH and DEP exhibited decreased GMV in middle frontal gyrus (MFG), and a lower GMV in MFG and medial prefrontal cortex (MPFC) in SCH than DEP. Compared with HC, both patient groups showed increased causal flow from the right cerebellum to the MPFC (common causal connectivity abnormalities). And distinct causal connectivity abnormalities (increased causal connectivity from the left thalamus to the MPFC in SCH than HC and DEP, and increased causal connectivity from the right cerebellum to the left thalamus in DEP than HC and SCH). In addition, the structural deficits in the MPFC and its causal connectivity from the cerebellum were associated with the negative symptom severity in SCH. This study found common/distinct structural deficits and aberrant causal connectivity patterns in the prefrontal–thalamic–cerebellar circuit in SCH and DEP, which may provide a potential direction for understanding the convergent and divergent psychiatric pathological mechanisms between SCH and DEP. Furthermore, concomitant structural and causal connectivity deficits in the MPFC may jointly contribute to the negative symptoms of SCH.

  • articleOpen Access

    Monte Carlo and phantom study in the brain edema models

    Because the brain edema has a crucial impact on morbidity and mortality, it is important to develop a noninvasive method to monitor the process of the brain edema effectively. When the brain edema occurs, the optical properties of the brain will change. The goal of this study is to access the feasibility and reliability of using noninvasive near-infrared spectroscopy (NIRS) monitoring method to measure the brain edema. Specifically, three models, including the water content changes in the cerebrospinal fluid (CSF), gray matter and white matter, were explored. Moreover, these models were numerically simulated by the Monte Carlo studies. Then, the phantom experiments were performed to investigate the light intensity which was measured at different detecting radius on the tissue surface. The results indicated that the light intensity correlated well with the conditions of the brain edema and the detecting radius. Briefly, at the detecting radius of 3.0cm and 4.0cm, the light intensity has a high response to the change of tissue parameters and optical properties. Thus, it is possible to monitor the brain edema noninvasively by NIRS method and the light intensity is a reliable and simple parameter to assess the brain edema.

  • chapterNo Access

    TECHNIQUES IN AUTOMATIC CORTICAL GRAY MATTER SEGMENTATION OF THREE-DIMENSIONAL (3D) BRAIN IMAGES

    An automatic cortical gray matter segmentation from a three-dimensional brain images is a well-known problem in medical image processing. Determining the location of the cortical surface of the human brain is often a first step in brain visualization and analysis. Due to the complicated and convoluted nature of the cortex, the manual slice by slice segmentation is generally a difficult, inefficient and inaccurate process, which makes an automatic 3D cortex segmentation an important task. In this chapter, we review techniques for automatic 3D MR images segmentation including boundary- and region-based methods, statistical methods, fuzzy clustering and deformable models.