In view of the complex background of images and the segmentation difficulty, a sparse representation and supervised discriminative learning were applied to image segmentation. The sparse and over-complete representation can represent images in a compact and efficient manner. Most atom coefficients are zero, only a few coefficients are large, and the nonzero coefficient can reveal the intrinsic structures and essential properties of images. Therefore, sparse representations are beneficial to subsequent image processing applications. We first described the sparse representation theory. This study mainly revolved around three aspects, namely a trained dictionary, greedy algorithms, and the application of the sparse representation model in image segmentation based on supervised discriminative learning. Finally, we performed an image segmentation experiment on standard image datasets and natural image datasets. The main focus of this thesis was supervised discriminative learning, and the experimental results showed that the proposed algorithm was optimal, sparse, and efficient.