Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We consider a stochastic-factor financial model wherein the asset price and the stochastic-factor processes depend on an observable Markov chain and exhibit an affine structure. We are faced with a finite investment horizon and derive optimal dynamic investment strategies that maximize the investor's expected utility from terminal wealth. To this end we apply Merton's approach, because we are dealing with an incomplete market. Based on the semimartingale characterization of Markov chains, we first derive the Hamilton–Jacobi–Bellman (HJB) equations that, in our case, correspond to a system of coupled nonlinear partial differential equations (PDE). Exploiting the affine structure of the model, we derive simple expressions for the solution in the case with no leverage, i.e. no correlation between the Brownian motions driving the asset price and the stochastic factor. In the presence of leverage, we propose a separable ansatz that leads to explicit solutions. General verification results are also proved. The results are illustrated for the special case of a Markov-modulated Heston model.
The paper surveys recent results on the finite element approximation of Hamilton-Jacobi-Bellman equations. Various methods are analyzed and error estimates in the maximum norm are derived. Also, a finite element monotone iterative scheme for the computation of the approximate solution is given and its geometrical convergence proved.