Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    IS THE JONES POLYNOMIAL OF A KNOT REALLY A POLYNOMIAL?

    The Jones polynomial of a knot in 3-space is a Laurent polynomial in q, with integer coefficients. Many people have pondered why this is so, and what a proper generalization of the Jones polynomial for knots in other closed 3-manifolds is. Our paper centers around this question. After reviewing several existing definitions of the Jones polynomial, we argue that the Jones polynomial is really an analytic function, in the sense of Habiro. Using this, we extend the holonomicity properties of the colored Jones function of a knot in 3-space to the case of a knot in an integer homology sphere, and we formulate an analogue of the AJ Conjecture. Our main tools are various integrality properties of topological quantum field theory invariants of links in 3-manifolds, manifested in Habiro's work on the colored Jones function.

  • articleNo Access

    𝔽ζ-geometry, Tate motives, and the Habiro ring

    In this paper, we propose different notions of 𝔽ζ-geometry, for ζ a root of unity, generalizing notions of 𝔽1-geometry (geometry over the "field with one element") based on the behavior of the counting functions of points over finite fields, the Grothendieck class, and the notion of torification. We relate 𝔽ζ-geometry to formal roots of Tate motives, and to functions in the Habiro ring, seen as counting functions of certain ind-varieties. We investigate the existence of 𝔽ζ-structures in examples arising from general linear groups, matrix equations over finite fields, and some quantum modular forms.