Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The Jones polynomial of a knot in 3-space is a Laurent polynomial in q, with integer coefficients. Many people have pondered why this is so, and what a proper generalization of the Jones polynomial for knots in other closed 3-manifolds is. Our paper centers around this question. After reviewing several existing definitions of the Jones polynomial, we argue that the Jones polynomial is really an analytic function, in the sense of Habiro. Using this, we extend the holonomicity properties of the colored Jones function of a knot in 3-space to the case of a knot in an integer homology sphere, and we formulate an analogue of the AJ Conjecture. Our main tools are various integrality properties of topological quantum field theory invariants of links in 3-manifolds, manifested in Habiro's work on the colored Jones function.
In this paper, we propose different notions of 𝔽ζ-geometry, for ζ a root of unity, generalizing notions of 𝔽1-geometry (geometry over the "field with one element") based on the behavior of the counting functions of points over finite fields, the Grothendieck class, and the notion of torification. We relate 𝔽ζ-geometry to formal roots of Tate motives, and to functions in the Habiro ring, seen as counting functions of certain ind-varieties. We investigate the existence of 𝔽ζ-structures in examples arising from general linear groups, matrix equations over finite fields, and some quantum modular forms.