Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ESSENTIAL ARCBODY AND TANGLE DECOMPOSITIONS OF KNOTS AND LINKS

    We prove that if K⊂ S3 is either: (I) a link with an essential n-string arcbody decomposition, where at least one arcspace has incompressible boundary, or a knot with an essential n-string tangle decomposition, where (II) each tangle has no parallel strings, or (III) one tangle space is not a handlebody and K is not cabled, then any nontrivial surgery on every component of K produces irreducible manifolds in all cases (with some exceptional surgeries in case (I)) and, in particular, Haken manifolds in cases (I) and (III). Moreover, if K is hyperbolic in (III) and at least one tangle space has incompressible boundary, then all nontrivial surgeries on K are also hyperbolic; this last result is also established for type (I) decompositions under some constraints.