The effects of Fe–NM (NM=B, C, N) co-doping on the stability, electronic structures, magnetic and optical properties of 2H-WSe2 monolayer are investigated in detail by spin-polarized density functional theory (DFT) calculations. The results show that the Fe-doped WSe2 monolayer exhibits magnetic half-metallicity (HM) with a 100% spin polarization due to the electrons partially occupied Fe e1e1 and a1a1 bonding states at the Femi level (EF)(EF), and eventually induces a magnetic moment of 2 μBμB. The Fe–B and Fe–N co-doped WSe2 monolayers show obvious spin-polarization and retain semiconductor character with an indirect bandgap of 0.034 eV and 0.220 eV, respectively, which can be attributed to the strong hybridization between the Fe dxydxy, d2zd2z states and BB, NpNp orbitals at the EFEF. Interestingly, the Fe–C co-doped WSe2 monolayer exhibits a typical non-magnetic semiconductor due to the effective charge compensation between Fe and C atoms, leading to completely symmetrical spin-up and spin-down channel of a1a1, a2a2, a3a3 and a4a4 states near EFEF. Moreover, the optical properties of WSe2 monolayer can be effectively tuned by Fe–NM co-doping, which can attribute to the introduction of impurity state. The excellent magnetic HM, tunable magnetic, optical properties of Fe–NM co-doped WSe2 monolayers are of great significance for further application in the fields of spintronics, opto-electronics and magneto-optics devices.