Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The excited states of some odd A nuclei near the stability line have been systematically investigated from light to intermediate mass with the spherical relativistic mean field (RMF) model. The ratio between the valence nucleon root-mean-square (RMS) radius and the core rms radius, the separation energy and the density distribution have been deduced as signatures for halo or skin structure. We have presented the scaling laws of the ratio of valence particle rms radii and square-potential radii versus the scaled separation energies. The probability for a valence particle being out of the binding potential has also been extracted. We proposed a relaxed necessary condition for nuclear halo occurrence.
The structure of 16-26O is investigated within the relativistic mean field (RMF) as well as high-energy nuclear collisions. The reaction cross-sections of 16-24O+12C around 1 GeV are calculated within the multiple scattering theory, where the multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. In-medium effects are investigated within the optical limit, where it is found to be important in order to get reliable information about nuclear radii and density distributions. The reaction cross-sections indicate to a halo structure for 23O. This neutron halo is also found in the rms matter radii and nuclear densities especially when Fermi shape is used in the optical limit, including in-medium effects, in extracting the parameters of the density distributions from the experimental reaction cross-sections.