Please login to be able to save your searches and receive alerts for new content matching your search criteria.
An energy supply dominated by the use of fossil fuels causes both climate change and air pollution, which have negative impacts on human capital via both health and productivity. In addition, different people are affected differently because of factors such as age, gender and education level. To enhance the understanding of the benefits of low carbon transition from the labor supply perspective and help to identify strategies of collaborative control for CO2 and local air pollutants in China, an integrated assessment model linking the air quality module and the health impact module with a disaggregated labor sector computable general equilibrium (CGE) economic system is developed and applied in this study. Results show some key findings. First, renewable energy development and carbon capture and storage (CCS) technologies will contribute significantly to GDP in terms of their impact on air quality improvement by 0.99% and 0.54%, respectively, in 2050. Second, due to differences in labor composition, air pollution has, and will continue to have, the greatest impact on sectors with a higher proportion of male and lower-educated workers — such as the coal sector, and it will have the least impact on sectors with a higher proportion of female and higher-educated workers — such as the public administration sector. Third, the different impacts of sector output will increase economic inequality.
Highlights
We measure the impact of extreme weather events—droughts and floods—on health-care utilization and expenditures in Sri Lanka. We find that frequently occurring local floods and droughts impose a significant health risk when individuals are directly exposed to these hazards. Individuals are also at risk when their communities are exposed even if they themselves are unaffected. These impacts, especially the indirect spillover effects to households not directly affected, are associated with land use in affected regions and access to sanitation and hygiene. Finally, both direct and indirect health risks associated with floods and droughts have an economic cost: our estimates suggest that Sri Lanka spends $19 million per year directly on health-care costs associated with floods and droughts. This cost is divided almost equally between the public purse and households, with 83% of it spent on flood-related health care and the rest on drought-related health care. In Sri Lanka, both the frequency and intensity of droughts and floods are likely to increase because of climatic change. Consequently, the health burden associated with these events will likely increase.