Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Effect of different welding energy on microstructure and toughness of HAZ of low carbon bainitic steel

    Low carbon bainitic steel (LCBS) with excellent combined properties is the first choice for materials of pipeline transiting geological disaster. However, welding will worsen its toughness. In this paper, three kinds of welding heat input were designed to study the relationship between the toughness and microstructure in the coarse grain zone of welding heat affect zone (CGHAZ) of LCBS. The evolution characteristics of the microstructure of LCBS and the CGHAZ, and impact fracture were investigated by optical microscopy (OM), scanning electron microscopy (SEM). The results indicated that microstructure of LCBS consists mainly of bainite ferrite (BF) and granular bainite (GB). Heat input for 22 kJ/cm, the original austenite grains become coarsening, the microstructure is a small amount of quasi polygonal ferrite (QF) and polygonal ferrite (PF), which exhibits low Charpy impact toughness. However, for heat input of 19 kJ/cm, the degree of grain coarsening is small and distribution of martensite-austenite (M-A) constituents is the chain. The statistics of image software show that with the increase of heat input (16–22 kJ/cm), the average grain size of original austenite is basically the same (25 um), which is mainly due to Nb solute drag restraint the growth of austenite grain.

  • articleNo Access

    Surface hardening characteristics of press die cast iron and plastic mold steel according to laser heat input

    In this study, the surface heat treatment of mold materials was performed using a high-power laser heat source and surface hardening characteristics were investigated. Laser surface heat treatment is a hardening method in which a surface is heated using high-density energy and self-quenched through rapid cooling. Hence, the heat input during laser heat treatment is important. The heat input for the surface hardening of each material was compared, and it was found that the heat input for each mold material was different. Additionally, die cast iron has higher thermal conductivity compared to mold steel, resulting in a larger heat input during heat treatment.