Given a positive integer nn, we let sfp(n)sfp(n) denote the squarefree part of nn. We determine all positive integers nn for which max{sfp(n),sfp(n+1),sfp(n+2)}≤150max{sfp(n),sfp(n+1),sfp(n+2)}≤150 by relating the problem to finding integral points on elliptic curves. We also prove that there are infinitely many nn for which max{sfp(n),sfp(n+1),sfp(n+2)}<n1/3max{sfp(n),sfp(n+1),sfp(n+2)}<n1/3.