Low hemolysis is an important factor for axial blood pumps that has been used in patients with heart failure. The structure of impellers plays a key role in the hemolytic properties of axial blood pumps. Axial blood pumps with various structure impellers exhibit different hemolytic characteristic. In the present study, we aimed to investigate the type of impellers structures in axial blood pumps that contain the best low hemolytic properties. Also, it is expensive and time-consuming to validate the axial blood pump's hemolytic property by in vivo experiments. Therefore, in the present study, the numerical method was applied to analyze the hemolytic property in a blood pump. Specifically, the hemolysis of the pump was calculated by using a forward Euler approach based on the changes in shear stress and related exposure times along the particle trace lines. The different vane structures and rotational speed that affect hemolysis were analyzed and compared. The results showed that long–short alternant vanes exhibited the best hemolytic property which could be utilized in the optimization design of axial blood pumps.