Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Nonlinear lift increase at high angles of attack for double swept waverider

    The nonlinear increase of the lift of the double swept waverider at high angles of attack is of vital interest. The aerodynamic performance of the double swept waverider is calculated and compared with that of single swept waveriders. Results suggest that the lift nonlinearity of the double swept waverider is stronger than that of equal-planform-area single swept one, and the nonlinearity increases as Mach number increases. Some scholars have proposed the “vortex lift” to explain the nonlinear lift increase, but it is questionable as the main lift of the waverider comes from the lower surface rather than the upper surface. This paper proposes another explanation that the nonlinear lift increase is related to the attachment of shock wave, influenced by the leading-edge sweep angle. The shock wave is more inclined to attach under the lower surface with smaller swept than that of larger swept as angle of attack increases. When the shock wave attaches, the pressure increase via angle of attack is nonlinear, leading to the nonlinearity of lift increase.

  • articleNo Access

    CHARACTERISTICS OF FORE-BODY SEPARATE FLOW AT HIGH ANGLE OF ATTACK UNDER PLASMA CONTROL

    A pair of plasma actuators with horseshoe shape is proposed for dynamic manipulation of forebody aerodynamic load at high angles of attack. Preliminary wind tunnel pressure measurements show that asymmetric force over a conical forebody with semi-apex angle 10° can be manipulated by activating the plasma actuator mounted on one side of the cone tip. Further work is suggested.