Please login to be able to save your searches and receive alerts for new content matching your search criteria.
High current pulsed electron beam (HCPEB) has been developing as a useful tool for surface modification of materials. This paper presents our research work on surface modification of metallic materials, such as mold steel, stainless steel and magnesium alloy, with a HCPEB equipment of working parameters as electron energy 27keV, pulse duration ~1µs and energy density ~5J/cm2. Investigations performed have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layer. The formation mechanism of surface craters and their evolution regularity are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stress formed during pulsed electron beam treatment. After the HCPEB treatments, samples show significant improvements in measurements of wear and corrosion resistance.