Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SURFACE MODIFICATION OF METALLIC MATERIALS BY HIGH CURRENT PULSED ELECTRON BEAM

    High current pulsed electron beam (HCPEB) has been developing as a useful tool for surface modification of materials. This paper presents our research work on surface modification of metallic materials, such as mold steel, stainless steel and magnesium alloy, with a HCPEB equipment of working parameters as electron energy 27keV, pulse duration ~1µs and energy density ~5J/cm2. Investigations performed have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layer. The formation mechanism of surface craters and their evolution regularity are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stress formed during pulsed electron beam treatment. After the HCPEB treatments, samples show significant improvements in measurements of wear and corrosion resistance.