Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Electromagnetic waves, solving the full set of Maxwell equations in vacuum, are numerically computed. These waves occupy a fixed bounded region of the three-dimensional space, topologically equivalent to a toroid. Thus, their fluid dynamics analogs are vortex rings. An analysis of the shape of the sections of the rings, depending on the angular speed of rotation and the major diameter, is carried out. Successively, spherical electromagnetic vortex rings of Hill's type are taken into consideration. For some interesting peculiar configurations, explicit numerical solutions are exhibited.