Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    HOTPLATE TECHNIQUE FOR NANOMATERIALS

    COSMOS01 Nov 2008

    As an efficient and cost-effective method to synthesize nanomaterials, the hotplate technique has been reviewed in this article. Systematic studies have been carried out on the characterizations of the materials synthesized. In addition to the direct preparation of nanomaterials on metals, this method has been extended to the substrate-friendly and plasma-assisted hotplate synthesis. Apart from chemically pure nanostructures, a few nanohybrids were synthesized, further demonstrating the flexibility of this technique. The investigations on their applications indicate that they are promising material systems with potential applications in field emission devices, gas sensors, Li-ion batteries and ultrafast optical devices.

  • chapterNo Access

    HOTPLATE TECHNIQUE FOR NANOMATERIALS

    As an efficient and cost-effective method to synthesize nanomaterials, the hotplate technique has been reviewed in this article. Systematic studies have been carried out on the characterizations of the materials synthesized. In addition to the direct preparation of nanomaterials on metals, this method has been extended to the substrate-friendly and plasma-assisted hotplate synthesis. Apart from chemically pure nanostructures, a few nanohybrids were synthesized, further demonstrating the flexibility of this technique. The investigations on their applications indicate that they are promising material systems with potential applications in field emission devices, gas sensors, Li-ion batteries and ultrafast optical devices.