Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleFree Access

    Investigating the compatibility of exact solutions in Weyl-type f(Q,T) gravity with observational data

    In this study, we investigate the dynamics of the Universe during the observed late-time acceleration phase within the framework of the Weyl-type f(Q,T) theory. Specifically, we consider a well-motivated model with the functional form f(Q,T)=αQ+β6κ2T, where Q represents the scalar of non-metricity and T denotes the trace of the energy–momentum tensor. In this context, the non-metricity Qμαβ of the space-time is established by the vector field wμ. The parameters α and β govern the gravitational field and its interaction with the matter content of the Universe. By considering the case of dust matter, we obtain exact solutions for the field equations and observe that the Hubble parameter H(z) follows a power-law behavior with respect to redshift z. To constrain the model parameters, we analyze various datasets including the Hubble, Pantheon datasets, and their combination. Our results indicate that the Weyl-type f(Q,T) theory offers a viable alternative to explain the observed late-time acceleration of the Universe avoiding the use of dark energy.

  • articleOpen Access

    DARK ENERGY AND QCD GHOST

    We argue that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the QCD ghost in a time-dependent background. We show that the QCD ghost produces dark energy proportional to the Hubble parameter formulaQCD is the QCD mass scale) which has the right magnitude ~ (3 × 10-3 eV)4.

  • chapterOpen Access

    Hubble trouble or Hubble bubble?

    The recent analysis of low-redshift supernovae (SN) has increased the apparent tension between the value of H0 estimated from low and high redshift observations such as the cosmic microwave background (CMB) radiation. At the same time other observations have provided evidence of the existence of local radial inhomogeneities extending in different directions up to a redshift of about 0.07. About 40% of the Cepheids used for SN calibration are directly affected because are located along the directions of these inhomogeneities. We compute with different methods the effects of these inhomogeneities on the low-redshift luminosity and angular diameter distance using an exact solution of the Einstein’s equations, linear perturbation theory and a low-redshift expansion. We confirm that at low redshift the dominant effect is the non relativist Doppler redshift correction, which is proportional to the volume averaged density contrast and to the comoving distance from the center. We derive a new simple formula relating directly the luminosity distance to the monopole of the density contrast, which does not involve any metric perturbation. We then use it to develop a new inversion method to reconstruct the monopole of the density field from the deviations of the redshift uncorrected observed luminosity distance respect to the ΛCDM prediction based on cosmological parameters obtained from large scale observations.

    The inversion method confirms the existence of inhomogeneities whose effects were not previously taken into account because the 2M ++ density field maps used to obtain the peculiar velocity for redshift correction were for 𝓏 ≤ 0.06, which is not a sufficiently large scale to detect the presence of inhomogeneities extending up to 𝓏 = 0.07. The inhomogeneity does not affect the high redshift luminosity distance because the volume averaged density contrast tends to zero asymptotically, making the value of HCMB0 obtained from CMB observations insensitive to any local structure. The inversion method can provide a unique tool to reconstruct the density field at high redshift where only SN data is available, and in particular to normalize correctly the density field respect to the average large scale density of the Universe.