Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A novel method to identify influential nodes in complex networks

    Identifying influential nodes in complex networks continues to be an open and vital issue, which is of great significance to the robustness and vulnerability of networks. In order to accurately identify influential nodes in complex networks and avoid the deviation in the evaluation of node influence by single measure, a novel method based on improved Technology for Order Preference by Similarity to an Ideal Solution (TOPSIS) is proposed to integrate multiple measures and identify influential nodes. Our method takes into account degree centrality (DC), closeness centrality (CC) and betweenness centrality (BC), and uses the information of the decision matrix to objectively assign weight to each measure, and takes the closeness degree from each node to be the ideal solution as the basis for comprehensive evaluation. At last, four experiments based on the Susceptible-Infected (SI) model are carried out, and the superiority of our method can be demonstrated.