Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The slope conjecture relates the degree of the colored Jones polynomial of a knot to boundary slopes of essential surfaces. We develop a general approach that matches a state-sum formula for the colored Jones polynomial with the parameters that describe surfaces in the complement. We apply this to Montesinos knots proving the slope conjecture for Montesinos knots, with some restrictions.
In this paper we use 3-manifold techniques to illuminate the structure of the string link monoid. In particular, we give a prime decomposition theorem for string links on two components as well as give necessary conditions for string links to commute under the stacking operation.