Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The investigation of the performance of Particle Swarm Optimization (PSO) algorithm with the new variants to inertia weight in computing the optimal control of a single stage hybrid system is presented in this paper. Three new variants for inertia weight are defined and their applicability with the PSO algorithm is thoroughly explained. The results obtained through the new proposed methods are compared with the existing PSO algorithm, which has a time varying inertia weight from a higher value to a lower value. The proposed methods provide both faster convergence and optimal solution with better accuracy.
Sine cosine algorithm (SCA) is a recently developed meta-heuristic method based on the characteristics of sine and cosine functions. However, SCA algorithm may suffer premature convergence in solving complex optimization problems. To mitigate this limitation, a modified SCA (MSCA) is developed to achieve an effective balance between exploration and exploitation. Specifically, the conversion parameter can be configured adaptively by using the individual fitness information in the evolution process to guide the individual search behavior. After that, an inertia weight is embedded in the position updating equation to further improve the search accuracy and accelerate the convergence speed. The performance of MSCA algorithm is investigated on 13 benchmark functions and the chaotic time series prediction problem. Experimental results demonstrate that MSCA algorithm is more effective than the other optimization methods.