Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    Carbohydrate metabolism in porphyria

    A high proportion of patients with porphyria cutanea tarda (PCT) show a hyperinsulinemic response to the oral glucose tolerance test (OGTT) attributed to the hepatopathy also frequent in this disease. We propose that hyperinsulinemia is the main feature and source of carbohydrate metabolic alterations present in both chronic and acute types of porphyria. In order to verify this hypothesis, the insulinemic response to the OGTT was studied in 12 healthy controls, 18 PCT patients and 14 patients with acute types of porphyria. Of the PCT patients, 22% showed an altered response to the OGTT, in agreement with other authors. The frequency of altered hyperinsulinemic response in PCT patients was similar to that in acute-type porphyria patients. However, the intensity of this alteration was significantly higher in PCT than in acute-type porphyria patients. Among the PCT patients with hyperinsulinemic response, some showed evidence of hepatic damage, while others did not. On the other hand, patients with acute types of porphyria and chronic hepatic damage, demonstrated by histology procedures, did not show the hyperinsulinemic phenomenon. In summary, both PCT and acute-type porphyria patients show a higher frequency of hyperinsulinemic response to the OGTT than the general population. This hyperinsulinemic response cannot be attributed to concomitant hepatic damage, but hepatopathy can intensify the insulinemic response.

  • articleNo Access

    Antidiabetic Effect of Nitobegiku in KK-Ay Diabetic Mice

    In the past, Nitobegiku (the herb of Tithonia diversifolia (Hemsl) A. Gray) has been used as a medicinal plant for diabetes. Antidiabetic effect of the water extract of Nitobegiku (NG) was investigated in KK-Ay-mice — one of the animal models of type 2 diabetes. NG (1500 mg/kg body weight) reduced the blood glucose of KK-Ay mice from 509 ± 22 mg/dl to 340 ± 14 mg/dl (p < 0.001) and also lowered the plasma insulin (p < 0.05) 7 hours after single oral administration. No change in blood glucose of NG-treated normal mice (ddY) was seen. These results support that NG improve glucose metabolism by reducing insulin resistance. Therefore, NG may be useful for treatment of type 2 diabetes.

  • articleNo Access

    Inhibitory Effect of Hypocrellin A on Protein Kinase C in Liver and Skeletal Muscle of Obese Zucker Rats

    In this ex vivo study, the inhibitory activity of hypocrellin A (HA), a perylene quinonoid pigment isolated from the Chinese medicinal fungus Hypocrella bambuase, on protein kinase C (PKC) enzyme activity in insulin target tissues of obese Zucker rats was assessed. Pre-incubation with HA for 30 minutes significantly inhibited the activity of partially purified PKC enzyme from liver and soleus skeletal muscle in a dose-dependent manner (IC50=0.07 and 0.26 μg/ml, respectively). HA produced a greater inhibitory effect in enzyme prepared from the liver than enzyme prepared from soleus muscle. Since total PKC activity in these two insulin target tissues is the net result of several different isoforms of PKC, and PKC-θ is a major isoform expressed in the soleus skeletal muscle, the present data suggest that the naturally occurring compound, HA, may selectively inhibit certain PKC isoforms other than PKC-θ. Further investigations are required to determine which PKC isoforms are most susceptible to HA and whether changes in PKC signaling during treatment with HA can reverse abnormalities of glucose and lipid metabolism in insulin resistant and diabetic states.

  • articleNo Access

    Effect of a Polyphenol-Rich Extract from Aloe vera Gel on Experimentally Induced Insulin Resistance in Mice

    Insulin resistance, which precedes type 2 diabetes mellitus (T2DM), is a widespread pathology associated with the metabolic syndrome, myocardial ischemia, and hypertension. Finding an adequate treatment for this pathology is an important goal in medicine. The purpose of the present research was to investigate the effect of an extract from Aloe vera gel containing a high concentration of polyphenols on experimentally induced insulin resistance in mice. A polyphenol-rich Aloe vera extract (350 mg/kg) with known concentrations of aloin (181.7 mg/g) and aloe-emodin (3.6 mg/g) was administered orally for a period of 4 weeks to insulin resistant ICR mice. Pioglitazone (50 mg/kg) and bi-distilled water were used as positive and negative controls respectively. Body weight, food intake, and plasma concentrations of insulin and glucose were measured and insulin tolerance tests were performed. The insulin resistance value was calculated using the homeostasis model assessment for insulin resistance (HOMA-IR) formula. Results showed that the polyphenol-rich extract from Aloe vera was able to decrease significantly both body weight (p < 0.008) and blood glucose levels (p < 0.005) and to protect animals against unfavorable results on HOMA-IR, which was observed in the negative control group. The highest glucose levels during the insulin tolerance curve test were in the negative control group when compared to the Aloe vera extract and pioglitazone treated mice (p < 0.05). In conclusion, Aloe vera gel could be effective for the control of insulin resistance.

  • articleNo Access

    The Protective Effect of Yi-Qi-Yang-Yin-Ye, a Compound of Traditional Chinese Herbal Medicine in Diet-Induced Obese Rats

    The present study was undertaken to determine the effect of Yi-Qi-Yang-Yin-Ye (Y-Q-Y-Y-Y), a compound of Traditional Chinese Herbal Medicine, on insulin resistance (IR) in the diet-induced obese rat model induced by intravenous injection with a low dose of streptozotocin and fed a high fat and high caloric diet. Y-Q-Y-Y-Y (2, 4, 8 g/kg) was administered via gavage daily for 4 weeks. The results showed that Y-Q-Y-Y-Y treatment decreased the levels of body weight, total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), free fatty acid (FFA), insulin (INS) and fast blood glucose (FBG) and increased the level of high density lipoprotein-cholesterol (HDL-C) in the diet-induced obese rats. Glucose tolerance was improved in the diet-induced obese rats treated with Y-Q-Y-Y-Y as well as GIR (glucose infusion rate) in the hyperinsulinemic euglycemic clamp experiment compared to the model control rats (p < 0.01). Moreover, treatment with Y-Q-Y-Y-Y up-regulated glycogen contents in both liver and skeletal muscle and increased insulin receptor amounts on the erythrocytes surface as assessed by using 125I-labeled auto-antibodies against insulin receptors. Taken together, our data suggested that Yi-Qi-Yang-Yin-Ye ameliorates insulin resistance in the diet-induced obese rats.

  • articleNo Access

    Improvement on Lipid Metabolic Disorder by 3′-Deoxyadenosine in High-Fat-Diet-Induced Fatty Mice

    This study explores the effects of 3′-deoxyadenosine, a compound from Cordyceps militaris, on lipid metabolic disorder induced by a high-fat-diet in C57BL/6 mice. These mice had an obese body, lipid metabolic disorder and insulin resistance and were treated orally with 100 mg/kg/day 3′-deoxyadenosine (DA), 15 mg/kg/day rosiglitazone and 150 mg/kg/day fenofibrate, respectively. Compared to the model mice, the body weight gain in DA-treated mice were decreased by 66.5%, serum triglyceride and total cholesterol levels were decreased by 20.7% and 16.7%, respectively, and the triglyceride content in the skeletal muscle was reduced by 41.2%. This treatment also had a significant effect on insulin resistance. In DA-treated mice, the serum insulin levels and homeostasis model assessment of the insulin resistance index were decreased by 30% and 46%, respectively, and the areas under the glucose-time curve were depressed by 18% in the insulin tolerance test and by 21.5% in the oral glucose tolerance test. Finally, the value of glucose infusion rates and insulin induced-glucose uptake into the skeletal muscle in the hyperinsulinemic-euglycemic clamp test were increased by 18% and 41%, respectively, compared to those in the model mice. This data suggests that the effects of DA on lipid metabolic disorder induced by a high-fat-diet may be linked to its improvement on insulin resistance, especially concerning the increase of insulin sensitivity in the skeletal muscle.

  • articleNo Access

    Anti-Diabetic Effects of a Coptis chinensis Containing New Traditional Chinese Medicine Formula in Type 2 Diabetic Rats

    The Chinese formula Tang-Min-Ling (TML), an improved product of the decoction of Dachaihu which has a history of more than 2000 years, has main constituents of Coptis chinensis Franch, Scutellaria baicalensis Georgi, Rheum officinale Baill and Bupleurum chinense DC. A multi-central randomized controlled investigation performed previously by us has showed that TML has positive effects on regulating glycometabolism in type 2 diabetes (T2DM) patients, but the mechanisms remain unclear. Using Otsuka Long-Evans Tokushima Fatty (OLETF) rats as an animal model with rosiglitazone as a positive control, we were able to detect TML's effect on the serum glucose, serum lipid, serum leptin and adiponcetin after oral administration for 12 weeks. We were also able to detect the insulin resistance level by a glucose clamp test and study the mechanisms of TML in improving insulin resistance by detecting skeletal muscle AMP-activated protein kinase (AMPK) and glucose transporter 4 (GLUT4). Results showed that TML significantly reduced the glucose area under a curve of the oral glucose tolerance test, and had a positive effect in regulating serum lipid metabolism. TML treatment also significantly reduced the serum leptin level, but it had no effect on the serum adiponectin level. The AMPK enzymatic activity and GLUT4 expression in Skeletal Muscle were also upregulated in the TML group. The results suggest that the Chinese medicine TML, which contains Coptis chinensis Franch as one of its components, improves glycometabolism and its possible mechanisms may involve in improvement of insulin resistance of OLETF rats.

  • articleNo Access

    Triterpenoid-Rich Fraction from Ilex hainanensis Merr. Attenuates Non-Alcoholic Fatty Liver Disease Induced by High Fat Diet in Rats

    Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.

  • articleNo Access

    Chinese Prescription Kangen-karyu and Salviae Miltiorrhizae Radix Improve Age-Related Oxidative Stress and Inflammatory Response through the PI3K/Akt or MAPK Pathways

    This study examined whether Kangen-karyu and its crude drug, Salviae Miltiorrhizae Radix, have a reno-protective effect on the age-related oxidative stress and inflammatory response through the phosphoinositide 3-kinase (PI3K)/Akt or mitogen-activated protein kinase (MAPK) pathways in aged rats. Kangen-karyu or Salviae Miltiorrhizae Radix (20 mg/kg body weight/day) was administered orally to old groups of rats for 16 days, and their effects were compared with the vehicle-treated old and young rats. The administration of Kangen-karyu caused a slight decrease in the serum glucose level and a significant decrease in the serum insulin level in the old rats. The increased levels of serum renal functional parameter (urea-nitrogen) and oxidative parameter were significantly reduced by both Kangen-karyu and Salviae Miltiorrhizae Radix. The old rats exhibited a dysregulation of the protein expression related to insulin resistance, oxidative stress, and inflammation in the kidneys, but Kangen-karyu administration significantly reduced the expression of the inflammatory proteins through the PI3K/Akt pathway. On the other hand, the Salviae Miltiorrhizae Radix-treated old rats showed a decrease in the inflammatory cytokines through the MAPK pathway. These results provide important evidence that Kangen-karyu and Salviae Miltiorrhizae Radix have a pleiotropic effect on the PI3K/Akt and MAPK pathways, showing renoprotective effects against the development of inflammation in old rats. This study provides scientific evidence that Kangen-karyu and Salviae Miltiorrhizae Radix improve the inflammatory responses via the PI3K/Akt or MAPK pathways in the kidney of old rats.

  • articleNo Access

    Chrysin and Luteolin Alleviate Vascular Complications Associated with Insulin Resistance Mainly Through PPAR-γ Activation

    Chrysin and luteolin are two flavonoids with Peroxisome proliferators-activated receptor γ (PPAR-γ) stimulating activity. Here, we investigated the protective effect of chrysin and luteolin from vascular complications associated with insulin resistance (IR). IR was induced in rats by drinking fructose for 12 weeks while chrysin and luteolin were given for 6 weeks with or without PPAR-γ antagonist, bisphenol A diglycidyl ether (BADGE). Then, blood pressure (BP) was recorded and serum levels of glucose, insulin, advanced glycation end products (AGEs) and lipids were measured. Concentration response curves for phenylephrine (PE), KCl, and acetylcholine (ACh) were obtained in thoracic aorta rings. Aortic reactive oxygen species (ROS) and nitric oxide (NO) generation were also studied. Chrysin and luteolin significantly alleviated systolic BP elevations caused by IR, while the co-administration of BADGE prevented chrysin alleviation. Although, neither chrysin nor luteolin affected ACh impaired vasodilatation, they both alleviated exaggerated vasoconstrictions to PE and KCl in IR animals. In addition, incubation of the aorta from IR animals with chrysin or luteolin prevented exaggerated vasoconstrictions to PE and KCl. On the other hand, co-administration of BADGE or co-incubation with GW9662, the selective PPAR-γ antagonist, prevented chrysin alleviation. Both chrysin and luteolin inhibited the developed hyperinsulinemia and increases in serum AGEs, lipids while, BADGE reduced the effect of chrysin on hyperinsulinemia and dyslipidemia. Chrysin and luteolin markedly inhibited elevated NO and ROS in IR aortae while BADGE did not change their effect on NO and ROS. In conclusion, chrysin and luteolin alleviate vascular complications associated with IR mainly through PPAR-γ dependent pathways.

  • articleNo Access

    Timosaponin B-II Ameliorates Palmitate-Induced Insulin Resistance and Inflammation via IRS-1/PI3K/Akt and IKK/NF-κB Pathways

    This study aimed to investigate the effect of timosaponin B-II (TB-II) on palmitate (PA)-induced insulin resistance and inflammation in HepG2 cells, and probe the potential mechanisms. TB-II, a main ingredient of the traditional Chinese medicine Anemarrhena asphodeloides Bunge, notably ameliorated PA-induced insulin resistance and inflammation, and significantly improved cell viability, decreased PA-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. Further, TB-II treatment notably decreased malondialdehyde (MDA) and lactate dehydrogenase (LDH) levels, and improved superoxide dismutase (SOD) and nitric oxide (NO). TB-II also reduced HepG2 cells apoptosis. Insulin receptor substrate-1 (IRS1)/phosphatidylinositol 3-kinase (PI3K)/Akt and inhibitor of nuclear factor κ-B kinase (IKK)/NF-κB pathways-related proteins, and IKKβ, p65 phosphorylation, serine phosphorylation of insulin receptor substrate-1 (IRS-1) at S307, tyrosine phosphorylation of IRS-1, and Akt activation were determined by Western blot. Compared to model group, TB-II significantly downregulated the expression of p-NF-κBp65, p-IKKβ, p-IRS-1, p-PI3K and p-Akt. TB-II is a promising potential agent for the management of palmitate-induced insulin resistance and inflammation, which might be via IR/IRS-1/PI3K/Akt and IKK/NF-κB pathways.

  • articleNo Access

    Angelica gigas Ameliorates Hyperglycemia and Hepatic Steatosis in C57BL/KsJ-db/db Mice via Activation of AMP-Activated Protein Kinase Signaling Pathway

    The prevention and management of type 2 diabetes mellitus has become a major global public health challenge. Decursin, an active compound of Angelica gigas Nakai roots, was recently reported to have a glucose-lowering activity. However, the antidiabetic effect of Angelica gigas Nakai extract (AGNE) has not yet been investigated. We evaluated the effects of AGNE on glucose homeostasis in type 2 diabetic mice and investigated the underlying mechanism by which AGNE acts. Male C57BL/KsJ-db/db mice were treated with either AGNE (10 mg/kg, 20 mg/kg, and 40 mg/kg) or metformin (100 mg/kg) for 8 weeks. AGNE supplementation (20 and 40 mg/kg) significantly decreased fasting glucose and insulin levels, decreased the areas under the curve of glucose in oral glucose tolerance and insulin tolerance tests, and improved homeostatic model assessment-insulin resistant (HOMA-IR) scores. AGNE also ameliorated hepatic steatosis, hyperlipidemia, and hypercholesterolemia. Mechanistic studies suggested that the glucose-lowering effect of AGNE was mediated by the activation of AMP activated protein kinase, Akt, and glycogen synthase kinase-3β. AGNE can potentially improve hyperglycemia and hepatic steatosis in patients with type 2 diabetes.

  • articleNo Access

    Chinese Herbal Medicine for the Optimal Management of Polycystic Ovary Syndrome

    Polycystic ovary syndrome (PCOS) is a complex heterogeneous disorder characterized by androgen excess and ovulatory dysfunction; it is now known to be closely linked to metabolic syndrome. Recent research suggests that insulin resistance plays an important role in the pathogenesis of PCOS which may lead to the excessive production of androgens by ovarian theca cells. Currently there is no single drug that can treat both the reproductive and metabolic complications of the disorder. Existing pharmaceutical agents such as hormonal therapies have been associated with side effects and are not appropriate for PCOS women with infertility. Additionally, insulin sensitizing agents useful for treating the metabolic abnormalities in PCOS have limited efficacy for treating reproductive aspects of the disorder. Chinese herbal medicines have a long history of treating gynaecological problems and infertility and therefore may be a novel approach to the treatment of PCOS. Current research demonstrates that the compounds isolated from herbs have shown beneficial effects for PCOS and when combined in an herbal formula can target both reproductive and metabolic defects simultaneously. Therefore, further investigation into Chinese herbal medicine in the treatment of PCOS is warranted.

  • articleNo Access

    Clinopodium chinense Attenuates Palmitic Acid-Induced Vascular Endothelial Inflammation and Insulin Resistance through TLR4-Mediated NF-κB and MAPK Pathways

    Elevated palmitic acid (PA) levels are associated with the development of inflammation, insulin resistance (IR) and endothelial dysfunction. Clinopodium chinense (Benth.) O. Kuntze has been shown to lower blood glucose and attenuate high glucose-induced vascular endothelial cells injury. In the present study we investigated the effects of ethyl acetate extract of C. chinense (CCE) on PA-induced inflammation and IR in the vascular endothelium and its molecular mechanism. We found that CCE significantly inhibited PA-induced toll-like receptor 4 (TLR4) expression in human umbilical vein endothelial cells (HUVECs). Consequently, this led to the inhibition of the following downstream adapted proteins myeloid differentiation primary response gene 88, Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-β and TNF receptor-associated factor 6. Moreover, CCE inhibited the phosphorylation of Ikappa B kinase β, nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase, extracellular regulated protein kinases, p38-mitogen-activated protein kinase (MAPK) and subsequently suppressed the release of tumor necrosis factor-α, interleukin-1β (IL-1β) and IL-6. CCE also inhibited IRS-1 serine phosphorylation and ameliorated insulin-mediated tyrosine phosphorylation of IRS-1. Moreover, CCE restored serine/threonine kinase and endothelial nitric oxide synthase (eNOS) activation and thus increased insulin-mediated nitric oxide (NO) production in PA-treated HUVECs. This led to reverse insulin mediated endothelium-dependent relaxation, eNOS phosphorylation and NO production in PA-treated rat thoracic aortas. These results suggest that CCE can significantly inhibit the inflammatory response and alleviate impaired insulin signaling in the vascular endothelium by suppressing TLR4-mediated NF-κB and MAPK pathways. Therefore, CCE can be considered as a potential therapeutic candidate for endothelial dysfunction associated with IR and diabetes.

  • articleNo Access

    Andrographis paniculata Improves Insulin Resistance in High-Fat Diet-Induced Obese Mice and TNFα-Treated 3T3-L1 Adipocytes

    Pro-inflammatory cytokines interfere with blood glucose homeostasis, which leads to hyperglycemia. Andrographis paniculata (AP) has been shown to possess anti-inflammatory activity and to reduce blood glucose levels in diabetes. The two major bioactive diterpenoids in AP, andrographolide (AND) and 14-deoxy-11,12-didehydroandrographolide (deAND), have potent anti-inflammatory activity. We studied whether APE (an ethanolic extract of AP), AND, and deAND could improve a high-fat diet (HFD)-induced hyperglycemia in vivo and TNFα-induced impairment of insulin signaling in vitro. Male C57BL/6JNarl mice were fed a normal diet (ND) or the HFD, and the fatty mice were treated with APE, deAND, or AND for 16 weeks. 3T3-L1 cells were used to study the underlying mechanisms by which APE, deAND, or AND attenuated TNFα-induced insulin resistance. The HFD significantly induced obesity, hyperglycemia, insulin resistance, and inflammation, whereas APE and deAND significantly ameliorated HFD-induced obesity, hyperglycemia, insulin resistance, and TNFα production. The HFD significantly impaired insulin signaling by decreasing the protein expression of p-IRS1 tyr632 and p-AKT ser473, as well as the membrane translocation of GLUT4 in response to insulin stimulation in epididymal adipose tissue. HFD-impaired the membrane translocation of GLUT4 was significantly reversed by deAND and APE. In addition, deAND and APE markedly reversed the detrimental effect of TNFα on the insulin signaling pathway and glucose uptake in 3T3-L1 cells. Despite no significant positive effect on p-AS160, a trend for recovery by deAND and APE was observed. These results suggest that deAND and APE protect against HFD-induced insulin resistance by ameliorating inflammation-driven impairment of insulin sensitivity.

  • articleNo Access

    Ameliorative Effects of Malonyl Ginsenoside from Panax ginseng on Glucose-Lipid Metabolism and Insulin Resistance via IRS1/PI3K/Akt and AMPK Signaling Pathways in Type 2 Diabetic Mice

    Abstract: Our previous study has revealed that malonyl-ginsenosides from Panax ginseng (PG-MGR) play a crucial role in the treatment of T2DM. However, its potential mechanism was still unclear. In this study, we investigated the anti-diabetic mechanisms of action of PG-MGR in high fat diet-fed (HFD) and streptozotocin-induced diabetic mice and determined the main constituents of PG-MGR responsible for its anti-diabetic effects. Our results showed that 16 malonyl ginsenosides were identified in PG-MGR by HPLC-ESI-MS/MS. PG-MGR treatment significantly reduced fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels and improved insulin resistance and glucose tolerance. Simultaneously, PG-MGR treatment improved liver injury by decreasing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) expression. Furthermore, Western blot analysis demonstrated that the protein expression levels of p-PI3K/PI3K, p-AKT/AKT, p-AMPK/AMPK, p-ACC/ACC and GLUT4 in liver and skeletal muscle were significantly up-regulated after PG-MGR treatment, and the protein expression levels of p-IRS-1/IRS-1, Fas and SREBP-1c were significantly reduced. These findings revealed that PG-MGR has the potential to improve glucose and lipid metabolism and insulin resistance by activating the IRS-1/PI3K/AKT and AMPK signal pathways.

  • articleNo Access

    EYE ON CHINA

      The First Chinese Laboratory Recognized By International Olive Council (IOC).

      China Kicks off Precision Medicine Research.

      Chinese Researchers Find Flavonoids in Cotton Petals to Treat Alzheimer's Disease.

      China Recognizes Prominent Scientists and Stresses on Innovation.

      China Corporation Tencent in Kenya to Help Combat Illegal Wildlife Trade.

      Catalyst Helps Convert Waste CO2 into Fuel.

      Articular Cartilage Stem Cells Participate in Cartilage Self-Repair during Early Osteoarthritis.

      Chinese Scientists Develop Polygraph Based on AI Technology.

      Scientists Uncover Beneficiary Effects of Dietary Iron Oxide Nanoparticles.

      A New Water Robot “Born” to Detect Water Quality.

      Archaeologists Discover World's Oldest Tea Buried with Ancient Chinese Emperor.

      Scientists Find in situ KIT-expressing Cardiomyocytes.

      Integrin CD11b Regulates Obesity-Related Insulin Resistance.

    • articleOpen Access

      Photoactivation of GLUT4 translocation promotes glucose uptake via PI3-K/Akt2 signaling in 3T3-L1 adipocytes

      Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Dysfunction of PI-3K/Akt signaling was involved in insulin resistance. Glucose transporter 4 (GLUT4) is a key factor for glucose uptake in muscle and adipose tissues, which is closely regulated by PI-3K/Akt signaling in response to insulin treatment. Low-power laser irradiation (LPLI) has been shown to regulate various physiological processes and induce the synthesis or release of multiple molecules such as growth factors, which (especially red and near infrared light) is mainly through the activation of mitochondrial respiratory chain and the initiation of intracellular signaling pathways. Nevertheless, it is unclear whether LPLI could promote glucose uptake through activation of PI-3K/Akt/GLUT4 signaling in 3T3L-1 adipocytes. In this study, we investigated how LPLI promoted glucose uptake through activation of PI-3K/Akt/GLUT4 signaling pathway. Here, we showed that GLUT4 was localized to the Golgi apparatus and translocated from cytoplasm to cytomembrane upon LPLI treatment in 3T3L-1 adipocytes, which enhanced glucose uptake. Moreover, we found that glucose uptake was mediated by the PI3-K/Akt2 signaling, but not Akt1 upon LPLI treatment with Akt isoforms gene silence and PI3-K/Akt inhibitors. Collectively, our results indicate that PI3-K/Akt2/GLUT4 signaling act as the key regulators for improvement of glucose uptake under LPLI treatment in 3T3L-1 adipocytes. More importantly, our findings suggest that activation of PI3-K/Akt2/GLUT4 signaling by LPLI may provide guidance in practical applications for promotion of glucose uptake in insulin-resistant adipose tissue.

    • articleOpen Access

      The effects and mechanisms of pomegranate in the prevention and treatment of metabolic syndrome

      Metabolic syndrome, such as obesity, diabetes and cardiovascular disease, is becoming epidemic both in developing and developed countries in recent years. Vegetable and fruit consumptions have been associated with the prevention of metabolic syndrome. Pomegranate is a widely consumed fruit in Middle East and Asia. Currently, accumulating data showed that pomegranate exhibits antioxidant, anti-inflammatory, hypolipidemic and hypoglycemic activities in experimental and clinical studies. The beneficial effects of pomegranate may come from its rich polyphenols and be mediated by increasing the activity of AMPK, upregulating GLUT4, activating PPARγ- ABCA1/CYP7A1 pathways and improving mitochondrial function. This review provides a systematical presentation of findings on the beneficial effects as well as the possible mechanisms of pomegranate and its major components on prevention and treatment of metabolic syndrome.

    • articleOpen Access

      Metabolic Syndrome in Polycystic Ovary Syndrome

      Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women of reproductive age. Although its essential clinical manifestation includes a plethora of symptoms and signs, which largely reflects the underlying hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, PCOS may also be associated with many metabolic derangements. These metabolic derangements happen to overlap with many of the core constituents of the metabolic syndrome (MBS)—increased insulin resistance, central obesity, and dyslipidemia. The two disorders also display similarly increased risks for certain metabolic and vascular diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Due to the many similarities between metabolic syndrome and PCOS, this review aims to examine the evidence concerning the overlapping features, the risks for comorbidities, possible shared mechanisms, and treatment strategies in patients with coexisting PCOS and MBS.