Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    REFERENCE POINT METHOD WITH IMPORTANCE WEIGHTED ORDERED ACHIEVEMENTS

    The Reference Point Method (RPM) is a very convenient technique for interactive analysis of the multiple criteria optimization problems. The interactive analysis is navigated with the commonly accepted control parameters expressing reference levels for the individual objective functions. The final scalarizing achievement function is built as the augmented max-min aggregation of partial achievements with respect to the given reference levels. In order to avoid inconsistencies caused by the regularization, the max-min solution may be regularized by the Ordered Weighted Averages (OWA) with monotonic weights which combines all the partial achievements allocating the largest weight to the worst achievement, the second largest weight to the second worst achievement, and so on. Further following the concept of the Weighted OWA (WOWA) the importance weighting of several achievements may be incorporated into the RPM. Such a WOWA RPM approach uses importance weights to affect achievement importance by rescaling accordingly its measure within the distribution of achievements rather than by straightforward rescaling of achievement values. The recent progress in optimization methods for ordered averages allows one to implement the WOWA RPM quite effectively as extension of the original constraints and criteria with simple linear inequalities.

  • chapterNo Access

    Why Use Interactive Multi-Objective Optimization in Chemical Process Design?

    Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements on the optimization methods used. In this paper, we point out some shortcomings of some widely used basic methods of multi-objective optimization. As an alternative, we suggest using interactive approaches where the role of a decision maker or a designer is emphasized. Interactive multi-objective optimization has been shown to suit well for chemical process design problems because it takes the preferences of the decision maker into account in an iterative manner that enables a focused search for the best Pareto optimal solution, that is, the best compromise between the conflicting objectives. For this reason, only those solutions that are of interest to the decision maker need to be generated making this kind of an approach computationally efficient. Besides, the decision maker does not have to compare many solutions at a time which makes interactive approaches more usable from the cognitive point of view. Furthermore, during the interactive solution process the decision maker can learn about the interrelationships among the objectives. In addition to describing the general philosophy of interactive approaches, we discuss the possibilities of interactive multi-objective optimization in chemical process design and give some examples of interactive methods to illustrate the ideas. Finally, we demonstrate the usefulness of interactive approaches in chemical process design by summarizing some reported studies related to, for example, paper making and sugar industries. Let us emphasize that the approaches described are appropriate for problems with more than two objective functions.

  • chapterNo Access

    Chapter 6: Why Use Interactive Multi-Objective Optimization in Chemical Process Design?

    Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements on the optimization methods used. In this chapter, we point out some shortcomings of some widely used basic methods of multi-objective optimization. As an alternative, we suggest using interactive approaches where the role of a decision maker or a designer is emphasized. Interactive multi-objective optimization has been shown to suit well for chemical process design problems because it takes the preferences of the decision maker into account in an iterative manner that enables a focused search for the best Pareto optimal solution, that is, the best compromise between the conflicting objectives. For this reason, only those solutions that are of interest to the decision maker need to be generated making this kind of an approach computationally efficient. Besides, the decision maker does not have to compare many solutions at a time which makes interactive approaches more usable from the cognitive point of view. Furthermore, during the interactive solution process the decision maker can learn about the interrelationships among the objectives. In addition to describing the general philosophy of interactive approaches, we discuss the possibilities of interactive multi-objective optimization in chemical process design and give some examples of interactive methods to illustrate the ideas. Finally, we demonstrate the usefulness of interactive approaches in chemical process design by summarizing some reported studies related to, for example, paper making and sugar industries. Let us emphasize that the approaches described are appropriate for problems with more than two objective functions.