Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART IV: FROM BERNOULLI SHIFT TO 1/f SPECTRUM

    By exploiting the new concepts of CA characteristic functions and their associated attractor time-τ maps, a complete characterization of the long-term time-asymptotic behaviors of all 256 one-dimensional CA rules are achieved via a single "probing" random input signal. In particular, the graphs of the time-1 maps of the 256 CA rules represent, in some sense, the generalized Green's functions for Cellular Automata. The asymptotic dynamical evolution on any CA attractor, or invariant orbit, of 206 (out of 256) CA rules can be predicted precisely, by inspection. In particular, a total of 112 CA rules are shown to obey a generalized Bernoulli στ-shift rule, which involves the shifting of any binary string on an attractor, or invariant orbit, either to the left, or to the right, by up to 3 pixels, and followed possibly by a complementation of the resulting bit string.

    The most intriguing result reported in this paper is the discovery that the four Turing-universal rules formula, formula, formula, and formula, and only these rules, exhibit a 1/f power spectrum.

  • articleNo Access

    A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART V: FRACTALS EVERYWHERE

    This fifth installment is devoted to an in-depth study of CA Characteristic Functions, a unified global representation for all 256 one-dimensional Cellular Automata local rules. Except for eight rather special local rules whose global dynamics are described by an affine (mod 1) function of only one binary cell state variable, all characteristic functions exhibit a fractal geometry where self-similar two-dimensional substructures manifest themselves, ad infinitum, as the number of cells (I + 1) → ∞.

    In addition to a complete gallery of time-1 characteristic functions for all 256 local rules, an accompanying table of explicit formulas is given for generating these characteristic functions directly from binary bit-strings, as in a digital-to-analog converter. To illustrate the potential applications of these fundamental formulas, we prove rigorously that the "right-copycat" local rule formula is equivalent globally to the classic "left-shift" Bernoulli map. Similarly, we prove the "left-copycat" local rule formula is equivalent globally to the "right-shift" inverse Bernoulli map.

    Various geometrical and analytical properties have been identified from each characteristic function and explained rigorously. In particular, two-level stratified subpatterns found in most characteristic functions are shown to emerge if, and only if, b1 ≠ 0, where b1 is the "synaptic coefficient" associated with the cell differential equation developed in Part I.

    Gardens of Eden are derived from the decimal range of the characteristic function of each local rule and tabulated. Each of these binary strings has no predecessors (pre-image) and has therefore no past, but only the present and the future. Even more fascinating, many local rules are endowed with binary configurations which not only have no predecessors, but are also fixed points of the characteristic functions. To dramatize that such points have no past, and no future, they are henceforth christened "Isles of Eden". They too have been identified and tabulated.