Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Both selectivity and sensitivity of chemical sensors can be significantly improved by exploiting the information contained in microfluctuations present in the sensor system. We call our collection of methods to extract information from these microfluctuations Fluctuation-Enhanced Sensing (FES). In this review paper we discuss general FES principles and two types of applications; gas sensing with commercial solid state sensors and the Sensing of Phage-Triggered Ion Cascde (SEPTIC) technique to detect and identify bacteria.
Both selectivity and sensitivity of chemical sensors can be significantly improved by exploiting the information contained in microfluctuations present in the sensor system. We call our collection of methods to extract information from these microfluctuations Fluctuation-Enhanced Sensing (FES). In this review paper we discuss general FES principles and two types of applications; gas sensing with commercial solid state sensors and the Sensing of Phage-Triggered Ion Cascde (SEPTIC) technique to detect and identify bacteria.