Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Direct current accelerators form the basis of many front-line industrial processes. They have many advantages that have kept them at the forefront of technology for many decades, such as a small and easily managed environmental footprint. In this article, the basic principles of the different subsystems (ion and electron sources, high voltage generation, control, etc.) are overviewed. Some well-known (ion implantation and polymer processing) and lesser-known (electron beam lithography and particle-induced X-ray aerosol mapping) applications are reviewed.
Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.
Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.
Direct current accelerators form the basis of many front-line industrial processes. They have many advantages that have kept them at the forefront of technology for many decades, such as a small and easily managed environmental footprint. In this article, the basic principles of the different subsystems (ion and electron sources, high voltage generation, control, etc.) are overviewed. Some well-known (ion implantation and polymer processing) and lesser-known (electron beam lithography and particle-induced X-ray aerosol mapping) applications are reviewed.