Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    TCGD: A Time-Constrained Approximate Guided Depth-First Search Algorithm

    In this paper, we develop TCGD, a problem-independent, time-constrained, approximate guided depth-first search (GDFS) algorithm. The algorithm is designed to achieve the best ascertained approximation degree under a fixed time constraint. We consider only searches with finite search space and admissible heuristic functions. We study NP-hard combinatorial optimization problems with polynomial-time computable feasible solutions. For the problems studied, we observe that the execution time increases exponentially as approximation degree decreases, although anomalies may happen. The algorithms we study are evaluated by simulations using the symmetric traveling-salesperson problem.

  • articleNo Access

    HYBRID EVOLUTIONARY AND ANNEALING ALGORITHMS FOR NONLINEAR DISCRETE CONSTRAINED OPTIMIZATION

    This paper presents a procedural framework that unifies various mechanisms to look for discrete-neighborhood saddle points in solving discrete constrained optimization problems (DCOPs). Our approach is based on the necessary and sufficient condition on local optimality in discrete space, which shows the one-to-one correspondence between the discrete-space constrained local minima of a problem and the saddle points of the corresponding Lagrangian function. To look for such saddle points, we study various mechanisms for performing ascents of the Lagrangian function in the original-variable subspace and descents in the Lagrange-multiplier subspace. Our results show that CSAEA, a combined constrained simulated annealing and evolutionary algorithm, performs well when using mutations and crossovers to generate trial points and accepting them based on the Metropolis probability. We apply iterative deepening to determine the optimal number of generations in CSAEA and show that its performance is robust with respect to changes in population size. To test the performance of the procedures developed, we apply them to solve some continuous and mixed-integer nonlinear programming (NLP) benchmarks and show that they obtain better results than those of existing algorithms.