Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, the modified Jacobi elliptic function method is applied for Salerno equation which describes the nonlinear discrete electrical lattice in the forbidden bandgaps. Dark and bright solitons are obtained. Also, periodic solutions and periodic Jacobi elliptic function solutions are reported. Moreover, for the physical illustration of the obtained solutions, three-dimensional and two-dimensional graphs are presented.
In this paper, we present the exact solutions of the Majda–Biello system. This system describes the nonlinear interaction of long-wavelength equatorial Rossby waves and barotropic Rossby waves with a substantial midlatitude projection, in the presence of suitable horizontally and vertically sheared zonal mean flows. The methods used to construct the exact solutions are the Kudryashov method and Jacobi elliptic function method. These two methods yield solitary wave solutions and periodic wave solutions.
The conformable derivative and adequate fractional complex transform are implemented to discuss the fractional higher-dimensional Ito equation analytically. The Jacobi elliptic function method and Riccati equation mapping method are successfully used for this purpose. New exact solutions in terms of linear, rational, periodic and hyperbolic functions for the wave amplitude are derived. The obtained solutions are entirely new and can be considered as a generalization of the existing results in the ordinary derivative case. Numerical simulations of some obtained solutions with special choices of free constants and various fractional orders are displayed.
This work aims to look into the dynamic research of coupled NLS-type equations with three components. The optical solitons, including the periodic function, trigonometric function, exponential function, solitary wave, and elliptic function solutions are built using the Jacobi elliptic function (JEF) method. The investigations will aid in improving comprehension of the soliton dynamics system’s overall illustration. Using Mathematica software, we visually represent some solutions found in 3D, contour, and 2D graphs for tangible demonstration and visual presentation. These results are helpful in optical fiber, signal processing and data transmission.
The nonlinear Kadoma equation with M-truncated derivatives (NLKE-MTD) is taken into consideration here. By using generalized Riccati equation method (GRE method) and Jacobi elliptic function method, new hyperbolic, rational, trigonometric and elliptic solutions are discovered. Because the NLKE is widely employed in optics, fluid dynamics and plasma physics, the resulting solutions may be used to analyze a wide variety of important physical phenomena. The dynamic behaviors of the different derived solutions are interpreted using 3D and 2D graphs to explain the effects of M-truncated derivatives. We may conclude that the surface moves to the right as the order of M-truncated derivatives increases.
The perturbed nonlinear Schrödinger equation is employed to characterize the dynamics of optical wave propagation when confronted with dissipation (or gain) and nonlinear dispersion that vary with both time and space. This equation serves as a fundamental model for investigating pulse dynamics within optical fibers and has application to nanofiber applications. This study successfully discovers optical solitons within this framework using the unified solver, Jacobi elliptic function, and simplest equation methods. We extract solutions using hyperbolic, trigonometric, and rational functions, including multi-solitons, dark, singular, bright, and periodic singular solitons. This study thoroughly compares our results with existing literature to provide novelty and significance of our findings. We have incorporated a detailed comparison between the methods employed in our study, which highlights their importance and strength. We have derived soliton solutions for the examined equations and generated 3D contour and 2D visual representations of the resulting solution functions. Alongside obtaining the soliton solutions, we offer a graphical exploration of how the parameters in the considered equations influence the system.