This is the second of a series devoted to the direct and inverse approximation theorems of the p-version of the finite element method in the framework of the weighted Besov spaces. In this paper, we combine the approximability of singular solutions in the Jacobi-weighted Besov spaces, which were analyzed in the previous paper,4 with the technique of partition of unity in order to prove the optimal rate of convergence of the p-version of the finite element method for elliptic boundary value problems on polygonal domains.