Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The slope conjecture relates the degree of the colored Jones polynomial of a knot to boundary slopes of essential surfaces. We develop a general approach that matches a state-sum formula for the colored Jones polynomial with the parameters that describe surfaces in the complement. We apply this to Montesinos knots proving the slope conjecture for Montesinos knots, with some restrictions.
We describe a normal surface algorithm that decides whether a knot, with known degree of the colored Jones polynomial, satisfies the Strong Slope Conjecture. We also discuss possible simplifications of our algorithm and state related open questions. We establish a relation between the Jones period of a knot and the number of sheets of the surfaces that satisfy the Strong Slope Conjecture (Jones surfaces). We also present numerical and experimental evidence supporting a stronger such relation which we state as an open question.