Malcev–Poisson–Jordan algebra (MPJ-algebra) is defined to be a vector space endowed with a Malcev bracket and a Jordan structure which are satisfying the Leibniz rule. We describe such algebras in terms of a single bilinear operation, this class strictly contains alternative algebras. For a given Malcev algebra (P,[,])(P,[,]), it is interesting to classify the Jordan structure ∘ on the underlying vector space of PP such that (P,[,],∘)(P,[,],∘) is an MPJ-algebra (∘ is called an MPJ-structure on Malcev algebra (P,[,]))(P,[,])). In this paper we explicitly give all MPJ-structures on some interesting classes of Malcev algebras. Further, we introduce the concept of pseudo-Euclidean MPJ-algebras (PEMPJ-algebras) and we show how one can construct new interesting quadratic Lie algebras and pseudo-Euclidean Malcev (non-Lie) algebras from PEMPJ-algebras. Finally, we give inductive descriptions of nilpotent PEMPJ-algebras.