In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different K-dimensions and approximation of s-dimensional fractal functions. We first investigate the K-dimension of the linear combination of fractal function whose K-dimension is s and the function satisfying Lipschitz condition is still s-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the s-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.